PAGE
1

Motorola Flash Innovation 2003 Contest Project F193

NTSC Video Using the 68HC908QY4

Jed Margolin
 Copyright 2003

Introduction

The Motorola 68HC908QY4 is used to produce an NTSC video signal which can be used in several applications. One is an NTSC Test Pattern Generator which produces simple test patterns in order to evaluate a TV's geometric distortion, high voltage regulation, and interlace quality. Another is a VCR Pacifier to allow a VCR to record an audio-only signal such as from a radio. The VCR Pacifier also includes a real-time clock which is displayed either in video or by using the TV's closed captioned decoder. Low-bandwidth data from the 68HC908QY4's A/D inputs can be displayed the same way, turning the VCR into a two-channel data logger. As a bonus, a Video Line Trigger is presented which counts video lines from an external NTSC video source and produces a pulse to trigger an oscilloscope at the selected line(s).

NTSC Sync

There are two standards for NTSC video: monochrome and color. The color standard is compatible with monochrome receivers, but it almost didn't turn out way. See NTSC Video: Background at the end of this article.

The monochrome standard calls for a horizontal rate of 15.750 KHz, a vertical rate of 60.0 Hz, and two interlaced fields of 262.5 lines to produce 525 lines per frame at 30 Hz.

The color standard adds a color subcarrier at 3.579545 MHz. and requires that the horizontal frequency be a ratio of 2/455 times the color subcarrier, for a frequency of 15.734 KHz. There are still 262.5 lines per field which gives a vertical frequency of 59.94 Hz. and a frame rate of 29.97 Hz.

The reason for specifying the horizontal frequency to be such an odd subdivision of the color frequency is so harmonics of the horizontal frequency do not interfere with the color subcarrier.

The reason for having two interlaced fields is to reduce the amount of flicker. It doesn't eliminate it. Pictures that are bright and contain large solid areas still flicker. Flicker is also worse if you're tired. (Film, which has 24 frames/second, flashes each frame twice for an effective rate of 48 Hz.)

The following simplified example of a 10-line display shows the difference between interlaced and progressive scan. (Progressive scan used to be known as "non-interlaced" until it was pointed out that if you want people to have a favorable impression about something, tell them what it is, not what it isn't.)

[image: image46.png]

Interlacing is done by having every other Vertical Blanking Interval (VBI) start and end 1/2 Horizontal Line early. The Horizontal trace on a CRT follows the sawtooth pattern shown in the following figure. Vertical deflection follows a similar pattern but is slower. Horizontal deflection is not affected by having VBI start and end early. It just continues on its merry way, so that when it starts the first line of the second field the vertical deflection has moved it vertically by 1/2 of a Horizontal line.

[image: image2.wmf]Active Horizontal Video

Horizontal Retrace

6

1

2

7

3

8

4

9

5

10

Interlaced Scan

The NTSC standards for Broadcast Television are in FCC Part 73, which is part of U.S. Code 47 and can be downloaded at : http://www.access.gpo.gov/nara/cfr/waisidx_02/47cfr73_02.html (Scroll down to FCC 73.699 TV engineering charts and select the PDF version).

Unfortunately, their conversion of the original document to digital form produced a very poor result. I found an old paper copy and have scanned it. It's much more legible. (73.699 File ntscfcc.PDF).

To simply things even further I have drawn my own figures (File ntscfigs.pdf) The timings are specified referenced to the Horizontal period (H). In the figures I have assumed the reference of 3.579545 MHz.

Using the 68HC908QY4

Since the Horizontal rate is defined as 2/455 times the color subcarrier frequency of 3.579545 MHz. we need to start at twice the color frequency if we are going to use an integer divider.

Twice the color frequency is 7.15909 MHz. Since the QY4's bus frequency is clock/4 we need an input clock of 7.15909 * 4 = 28.63636 MHz. (The QY4's maximum clock is 32 MHz.)

28.63636 MHz. is now a standard crystal frequency and is available from distributors such as www.digikey.com and www.mouser.com .

The next step is to figure out how to make each Horizontal line exactly 455 bus cycles long.

The QY4's Interrupt Timer can be set to integer numbers of the bus clock, so we can generate a Timer Interrupt every 455 bus cycles.

However, when an Interrupt is generated while a multicycle instruction is executing, the Interrupt is not recognized until the instruction is finished. This would produce some Horizontal lines with more than 455 cycles.

The only way to avoid this is to not use multicycle instructions in the Main Loop.

Therefore, the Main Loop consists solely of NOP instructions (which are single cycle instructions). All of the real work is done in the Interrupt functions.

The NOP Table consists of 455 NOPS followed by a JMP NOP_TABLE. (The JMP is there as a failsafe, we don't actually want to ever get there.)

When we return from an Interrupt we will fiddle with the Stack to make the Interrupt return address the start of the NOP Table.

Finally, to make things easier, we will use dynamic vector redirection to send the Timer Interrupt to the proper part of the sync chain. This avoids having to send the program through a chain of Compares to get where it needs to be.

There is still a small problem. The pulses during the Vertical Blanking Interval (VBI) occur at twice the Horizontal rate. Since the Horizontal period is 455 cycles we cannot divide it exactly in half unless we want to add hardware. Since the difference is very small (228/227 instead of 227.5/227.5) I chose to not add hardware. TVs and VCRs are very forgiving when it comes to sync signals; it is much more important that sync be consistent. So while the QY4 Sync Generator is fine for most applications, you probably shouldn't use it for running a TV station.

Another place where my sync deviates from NTSC is in the width of the equalizing and sync pulses during VBI. Some of the pulses have been widened to allow the QY4 enough time to handle the overhead required to return from the Interrupt and respond to the next one. Again, consistency is the main thing.

By the way, the purpose of the complicated structure of VBI is to produce an interlaced display. While much simpler VBI schemes are possible they are not guaranteed to produce a good interlace. Without the interlace you would have a picture of 262.5 lines at 60Hz. instead of 525 lines at 30 Hz.

And finally, line numbers can be confusing. Sometimes line numbers are referenced to each field so that Field 1 has a line 21 and Field 2 also has a line 21. It is more useful when line numbers are referenced to the frame (two fields) so that line 21 is in Field 1 and line 284 is in Field 2.

The following is a block diagram of the basic sync program.

[image: image3.wmf] Main:

TIRQ Vector = TIRQ1

Start Interrupt Timer

 Jump to NOP Table

 NOP Table:

 455 NOPs

 JMP NOP Table

TIRQ1: Field 2 Active Video

 Do Horizontal Sync

 Increment Vertical Count

 If End of Active Video: TIRQ = TIRQ2

 TIRQ Return

TIRQ2: Field 1 VBI

 6 Equalization Pulses

 6 Sync Pulses

 6 Equalization Pulses

 TIRQ = TIRQ3

 TIRQ Return

TIRQ3: Field 1 Active Video

 Do Horizontal Sync

 Increment Vertical Count

 If End of Active Video: TIRQ = TIRQ4

 TIRQ Return

TIRQ4: Field 2 VBI

 6 Equalization Pulses

 6 Sync Pulses

 6 Equalization Pulses

 TIRQ = TIRQ1

 TIRQ Return

 TIRQ Return:

 Write Address of NOP Table

 to Return Address in Stack

 RTI

Timer Interrupt:

 Jump to TIRQ Vector

NTSC Sync Generator

 Initialize:

 Stack

 Ports

 Variables

 Interrupt Timer

Applications

The Schematics for the following applications are in the file schems.pdf .

The Programs (including source, listing, and executable for each application) are in progs.zip .

Standard NTSC Sync Generator
Hardware: NTSC Sync Generator

Software: sync.asm

Produces standard NTSC Sync with Composite Sync, Horizontal Blanking, Vertical Blanking, Color Burst Gate, and Field Index.

It draws a square in the center of the screen to show that it’s working.

Here is the code that does the Horizontal Sync for Field 1 active video.

*===

* Active Video: Field 1 begins on Line 10, ends on Line 262 1/2

* Real Horizontal Sync

TIRQ3:

* HBLANK signal will be about 11 us total

BCLR
HBLANK,PORTB

; [4] HBLANK on

* HSYNC front porch (1.27 us = 9 cycles total)

BCLR
HBLANK,PORTB

; [4] waste cycles

NOP

; [1]

*---------

* HSYNC will be 4.77 us = 34 cycles

BSET
CSYNC,PORTB

; [4] SYNC on

BCLR
TOF,TSC

; [4] reset interrupt flag

LDX
#8

; [2]

tq3a:
DBNZX
tq3a

; [3]

BCLR
CSYNC,PORTB

; [4] SYNC off

* ---

* Color Burst Front Porch Gate 0.38 us (instruction fetch time is sufficient)

* Color Burst: at least 8 cycles of 3.579545 MHz = 2.3 us = 16 cycles

* We will do 9 cycles of 3.579545 MHz = 18 cycles

BSET
CBGATE,PORTB

; [4]

BSET
CBGATE,PORTB

; [4] waste cycles

BSET
CBGATE,PORTB

; [4] waste cycles

BSET
CBGATE,PORTB

; [4] waste cycles

NOP

; [1]

NOP

; [1]

BCLR
CBGATE,PORTB

; [4]

*---------

* From start of HSYNC to end of HBLANK is 9.22 us = 66 cycles

* We need 6 more cycles

BCLR
CBGATE,PORTB

; [4]
waste cycles

NOP

; [1]

NOP

; [1]

BSET
HBLANK,PORTB

; [4] HBLANK off

*---------

* Check Vertical Count

DBNZ
vcount,tq3c

* We have reached the end of active video. Next, start VBI

LDHX
#TIRQ4

; Timer Overflow Vector: Start VBI next time

STHX
timer_vec

BSET
VBLANK,PORTB

; oscilloscope trigger high

JMP
TIRQRET

* Video is still active

* We have about 50 us to do something else

tq3c:
JSR
Do_Field1

; draw a box

JMP
TIRQRET

*===

Note that it is necessary to count cycles in many places. The P&E Microcomputer Systems Assembler is especially nice because it has switches to have the list file show cycle counts.

The exact string that I use is: casm08z.exe MYFILE S L D C
S – generate Motorola S19 object file

L – generate LISTING file

D – generate P&E DEBUG file

C – show cycle counts in listing file

In addition, their simulator is essential when working on a large number of functions that require counting cycles.

Stripped Down NTSC Sync Generator
Hardware: NTSC Sync Generator

Software: syncn.asm

Produces standard NTSC Sync with Composite Sync, Vertical Blanking, and Field Index.

This was used in the development of the other applications. Horizontal Blanking and the Color Burst Gate were removed in order to free up more QY4 cycles.

Monitor Test Patterns

[image: image1.wmf]6

1

2

7

3

8

4

9

5

10

Interlaced Scan

Progressive Scan

1

2

3

4

5

6

7

8

9

10

Hardware: NTSC Monitor Test Pattern Generator

Software: mtest.asm

Even after producing all the sync signals in software the QY4 has time to do other things. This application produces a few useful test patterns for evaluating a TVs performance to show problems that are often not apparent when it is displaying a movie in the store and which become apparent only after you have bought the TV and used it for a week or two, and which then become increasingly apparent. And annoying.

[image: image10.jpg]

Warning, these test patterns show a TV's performance in areas for which there are few, if any, consumer industry standards other than the manufacturer representative's statement, "Well, it meets our standards because it looks ok to me."

The first pattern is a crosshatch for evaluating geometric distortion. Geometric distortion causes lines that should be straight to bend or be outright crooked.

The second pattern is for testing the TV's High Voltage Regulation. In a CRT the deflection sensitivity is intimately tied to the high voltage which means that a change in high voltage changes the size of the picture. If you are watching a TV program and a change in the brightness of a scene causes the picture size to change, it can be distracting.

In this test the brightness of a square having an area of approximately 1/4 of the screen is toggled between 50% and 100% brightness. (Due to the difficulty getting good pictures from the screen I used the best picture and changed the brightness in software.)
[image: image11.jpg]

[image: image12.jpg]

It has been my experience that the larger the TV (CRT) the worse the high voltage regulation, even after accounting for the larger screen size. In some TVs the high voltage regulation is so bad that it doesn't hold up even during the period of a scan line.

The third test shows how well the TV interlaces the two fields.

The test pattern generator produces two squares, one during each field, which overlap in the center. (You need a magnifying glass to properly see the scan lines.)

The screen pictures I took did not properly show the pattern, probably due to camera speed, so I have drawn what it looks like. The drawing on the left represents the approximate size on-screen. The drawing on the right is a closeup of the two squares. (These drawings assume a perfect interlace.)

[image: image4.wmf]
This test pattern generator is useful if you are shopping for a new TV and the salesperson will allow you to connect it to the store's TVs.

If you are happy with your current TV you might not want to build it. Once you become aware of a TV's defects they will become increasingly apparent over time even when watching regular programming.
VCR Pacifier

A standard consumer VCR has several features that make it attractive for recording audio-only signals such as from a radio. A standard T-120 cassette can record 6 hours of material, the audio quality is pretty good, the VCR has a timer for starting and stopping recording, and there is a tape counter which, in modern VCRs, shows elapsed and remaining time. However, in my necessarily-limited sample of two Toshibas and an RCA, when recording audio without an accompanying video signal the VCR's tape counter does not function. (With an earlier generation VCR whose manufacturer I forget, recording audio without a video signal caused the audio to warble.)

All we need is a little video to keep the VCR happy. Since the QY4 can produce NTSTC sync it makes an ideal VCR Pacifier.

In addition, we are going to add a real-time clock so we if want to determine the time that a particular audio segment was recorded we can do so without having to perform clock arithmetic with the tape counter.

There are two simple ways to record the clock so it can be played back on any VCR using only a TV. One way is to use regular video. The other way is to generate a signal that will be understood by the TV's Closed-Captioned Decoder. (Since 1993 all TVs having a screen size of at least 13" manufactured for sale in the U.S. have been required to have a Closed-Captioned Decoder.)

[image: image13.jpg]

Once we display the clock we will still have some QY4 processing time (and memory) leftover so we will use the QY4's A/D inputs to make a simple display for the audio. Since data is data, we can instead use the method to record and display low-bandwidth data.

The picture to the right shows the full-featured VCR Pacifier. The RCA jacks at the rear are for audio/data input, power, and video output.

The toggle switch at the front is the power switch. Next to it is the power LED. The two pushbutton switches are for setting the time. A quick press on the "Increment Time" Pushbutton increments the time by one minute. Holding it down longer increments the hours as long as it is held down. The "Decrement Time" Pushbutton works the same way but decrements the minutes/hours.

The first step is to do the clock. And first we will do it in video.

VCR Pacifier - Clock Only, Clock Displayed Using Video

Hardware: NTSC Video (with Audio Inputs)

Software: clockvid.asm

Programming a realtime clock would be easy if Vertical Sync was 30.00 Hz. Unfortunately, it isn't. It's 29.970 Hz. This means that if we just count Vertical Syncs, at the end of the day (24 hours) instead of counting 86,400 seconds it will only count 86,312.2 seconds which is 87.8 seconds slow.

Thus, we need to add 87.8 seconds every 24 hours. We could do this by just adding 87.8 seconds at the end of the day but it will be less noticeable if we spread it out over the entire day.

The compensation we need is to speed up the count by a factor of 1.00101691 . We will do this by adding one count every 984 vertical syncs. (985/984 = 1.00101626). Since we are counting at the Vertical Sync rate this will be unnoticeable to the user.

This method can also be used to compensate for the crystal tolerance in systems where greater time accuracy is desired. It is cheaper than adding a trimmer capacitor and has the advantage that it can be made accessible to the user without opening the case. (It does require a way to access the function, preferably without adding a switch.)

This application does not require that kind of accuracy, so we will settle for adding one count every 984 Vertical Syncs.

Next comes video, which we will be producing entirely in software.

Since we will be displaying the clock solely in software the QY4 has to control the pixels by turning the bits on and off at the proper time.

The normal method of storing the bit pattern for an alphanumeric character and then examining it during the scan line to turn the bits on and off would be too slow.

The method used is to store the sequence of the actual QY4 instructions and call the sequence at the proper time.

For example:

Here is the definition of the number '3' if we used the first approach. The characters are 8x8 so they require 8 bytes of data.

ch_3:
 DC.B
$0c,$7e,$3c,$18,$c6,$06,$00,$7c

Here is the definition of the number '3' using the second approach, showing only the first two lines of the character:

ch_3:

* $7E

 BCLR VIDEO,PORTB

 BSET VIDEO,PORTB

 BSET VIDEO,PORTB

 BSET VIDEO,PORTB

 BSET VIDEO,PORTB

 BSET VIDEO,PORTB

 BSET VIDEO,PORTB

 BCLR VIDEO,PORTB

 BCLR VIDEO,PORTB

 RTS

* $0C

 BCLR VIDEO,PORTB

 BCLR VIDEO,PORTB

 BCLR VIDEO,PORTB

 BCLR VIDEO,PORTB

 BSET VIDEO,PORTB

 BSET VIDEO,PORTB

[image: image14.jpg]

 BCLR VIDEO,PORTB

 BCLR VIDEO,PORTB

 BCLR VIDEO,PORTB

 RTS

Doing it this way takes a great deal more memory, but the only other option would be to add hardware or use a faster MCU.

This picture shows the size of the characters relative to the size of the TV screen. As you can see, even with the fast method the characters are very large and you can only fit 6 characters on a line, so it is best viewed on a small TV or a larger TV a fair distance away. But you can’t beat the price.

VCR Pacifier - Audio Input, Clock Displayed Using Video
[image: image15.jpg]

We still have QY4 cycles and memory leftover so we will connect the audio to one of the QY4’s A/D inputs and use it to make something on the screen move.

Since the QY4 A/D inputs are unipolar (0v – VDD) and we are only interested in the AC component of the audio signal we will capacitively couple it and bias the A/D input to ½ VDD.

The audio on adc1 is read on every active video line that is not used for writing on the screen and each value is compared to the highest and lowest value already read during that frame. If it’s higher than the current highest value then it becomes the new highest value. If it’s lower than the current lowest value then it becomes the new lowest value.

The reason for sampling the audio so frequently (though not on every video line) is to get a better representation of the audio level than could be gotten by sampling just once per fame.

Although it would be nice to be able to display the actual audio waveform, this would require enough memory to save 16 ms. worth of samples. (This is, after all, a raster display.)

I came up with two ways to display the audio signal:

VCR Pacifier - Audio Input, Clock Displayed Using Video #1
 Hardware: NTSC Video (with Audio Inputs)

 Software: audio1v.asm

Realtime Clock, Reads audio from adc1 and displays it as a moving bar in video.

Audio data is AC coupled, and is converted to Vp-p during sampling.

Data is sampled several times per frame (30 Hz).

[image: image16.jpg]

[image: image17.jpg]021 ¢
284

The bar takes several seconds to move from the left to the right. The height of the bar indicates the maximum amplitude during the frame. Even at a frame period of 16 ms. it’s fast enough to keep time with speech or music.

VCR Pacifier - Audio Input, Clock Displayed Using Video #2
Hardware: NTSC Video (with Audio Inputs)

Software: audio2v.asm

Realtime Clock, Reads audio from adc1 and displays it as a bar in video.

Audio data is AC coupled, and is converted to Vp-p during sampling.

Data is sampled several times per frame (30 Hz).

[image: image18.jpg]4sv

R13
2 s 22k

AudioTn adel

"
ouezsy B

[image: image19.jpg]

[image: image20.jpg]05:49
t 37 P

Since data is data, we can just log the values.

Because the main use for this application will be for low bandwidth DC data we need a different circuit for the A/D inputs. The figure at the right is an example. (It assumes the data is referenced to ground.)

VCR Pacifier - Data Input, Clock Displayed Using Video

[image: image21.jpg]05:26
t:32P

Hardware: NTSC Video (with Data Inputs)

Software: datavid.asm

Realtime Clock, Reads data from adc0 and adc1.

Displays the values in video.

Data is sampled once per frame (30 Hz).

Although the bandwidth is limited to 15 Hz. It may be useful for low bandwidth applications like monitoring temperatures or line voltages.

The number “057” is from adc0; the number “182” is from adc1. (The values are in BCD).

There is a potential gotcha when using more than one of the QY4’s A/D inputs because the A/D channels that are not selected revert to digital port I/O pins.

There will be an obvious problem if the digital port I/O pin is configured as an output.

However, when configured as an input there is a more subtle problem. If the input has its pullup enabled it could affect the circuitry that is expecting to see an A/D input. But if the pullup is not enabled, then when its A/D input is not selected it will be a digital input that is either left floating or it will be driven by a signal that could be somewhere between ‘0’ and ‘1’. Neither is a good idea. (I chose to not enable pull-ups.)
Closed Captioning

Now that we have done the VCR Pacifier (and Data Logger) using direct video for displaying characters we will do it again using Closed Captioning.

As I mentioned, since 1993 all TVs having a screen size of at least 13" manufactured for sale in the U.S. have been required to have a Closed Caption Decoder. TVs with smaller screens are not required to have the decoder (and I have not seen a small-screen TV that had one.)

The standards for Closed Captioning can be found in 47CFR15.119 which can be downloaded by going to: http://www.access.gpo.gov/nara/cfr/waisidx_02/47cfr15_02.html and scrolling down to 15.119 where you can download it in text or PDF formats.

Both formats leave something to be desired so I have reformatted it to MS Word to make it easier to read. (File: 47CFR15.doc)

The technical standards for Closed Captioning are in 47CFR73.682 (a) (22) which can be downloaded by going to http://www.access.gpo.gov/nara/cfr/waisidx_02/47cfr73_02.html and scrolling down to 73.682 where you can download it in text or PDF formats.

The section starts with:

 (22)(i) Line 21, in each field, may be used for the transmission of a program-related data signal which, when decoded, provides a visual depiction of information simultaneously being presented on the aural channel (captions). Line 21, field 2 may be used for transmission of a program-related data signal which, when decoded, identifies a rating level associated with the current program. Such data signals shall conform to the format described in figure 17 of Sec. 73.699 of this chapter, and may be transmitted during all periods of regular operation. On a space available basis, line 21 field 2 may also be used for text-mode data and extended data service information.

There is more in the section that you might find interesting.

The part that is relevant to us is where it mentions figure 17 of §73.699. This section was mentioned earlier in this article because it contains a number of figures for NTSC standards.

You can download the figures by going to: http://www.access.gpo.gov/nara/cfr/waisidx_02/47cfr73_02.html

(Scroll down to FCC 73.699 TV engineering charts and select the PDF version).

Or you can just go to the next page.
[image: image5.jpg]Federal Communications Commission §73.701

100~
ToxoLES oF osor
s LEVEL T R
TWGT B 4 PRRITY ASCH
BT pp CHARACTERS
& i oaa
o7 Nsmar ar
7 2904, 337645,
207 —zom Tos3m
397208
o [iooen
2748205,
ey
1007805 si2634s,
— @iew T can)
asaz,
8368

FIGWRE 17 LINE 21 FELD DATA SIGNAL FORMAT

o

' 50 e UNTS, DATAC" O

2 DATA PULSE RISE TWE= 27 B4R RISE TWE.

3 DATA T BASE- 32 f (050349650 M)

& DATA BIT INTERVAL » 1/32 (198648)

5 NEGHTVE GONG ZERO. CROSSINGS OF
GLOCK ARE_ COMERENT WITH DATA
TRANSITONS.

& ONTA AND CLOCK RUN-M COMERENT
T W

HORIZONTAL DIMENSIONS NOT TO SCALE

FCC §78.699, Figure 17

There are some critical items in this figure that might not be obvious, such as, “What is the Zero-Crossing of the Run-In Clock?” To show them more clearly I have redrawn part of the figure.

[image: image6.wmf]50

25

0

-40

d0

d1

Zero Crossing

Start Bit

IRE Units

2 bits

IRE Units refers to the level of the signal. 0 IRE Units is the blanking level. 50 IRE Units is half of maximum brightness. (100 IRE Units would be maximum brightness.) Notice that Sync is at –40 IRE Units.
The Run-In Clock is specified to go between 0 and 50 IRE Units so that Zero Crossing refers to where the zero-value of the sine wave crosses the level of 25 IRE Units.

This is critical because the data bit transitions are referenced to the zero-crossings of the run-in clock.

If we were generating an actual sine wave we would have to make sure to use the zero-crossings to clock the data.

However, we won’t be making a sine wave. We’ll be using a square wave as shown in the next figure. If we were to use the bottom of the sine wave where it reaches 0 IRE Units as the zero-crossing we would be off by ¼ bit time and it wouldn’t work. (I know because that’s what I did the first time.)

My system worked better using 100 IRE Units for the Closed Captioning signal than with 50 IRE Units, so that’s what I went with.

[image: image7.wmf]50

25

0

-40

d0

d1

100

Zero Crossing

Start Bit

IRE Units

2 bits

You might think that with the low bit rate (503 KHz.) and with such a robust reference clock a Closed Caption Decoder would be fairly tolerant of the exact frequency used.

Nope. Look at the FCC’s figure for Note 3 that says, “Data Bit Interval = H/32 (1.986 us), meaning that the clock is specified as 32H.

 I have a Philips Magnavox 25TRC1 that absolutely refuses to recognize a Closed Caption signal unless the clock is 32H. (Well, ok, the TV was manufactured in November 1994). A more modern Sharp 13N-M100B, manufactured August 2002, is much more tolerant (and the picture is excellent, too).

Since we are producing the Closed Caption bit stream entirely in software we are restricted to clock rates that can be produced by an integer number of bus cycles (BSET/BCLR instructions followed by a number of NOPS).

My first effort used the NTSC sync generator previously described, operating at 28.63636 MHz. to produce 455 bus cycles per Horizontal Line. Although I was able to produce a Closed Captioning bit clock very close to 503 KHz., it was not at 32H because 455/32 is not an integer.

Since it worked with the Sharp TV but not with the Philips Magnavox TV I did not want to make a unit that would fail to work with the many other older TVs that are undoubtedly still out there.

Having the unit produce a Closed Captioning bit stream that ran at 32H and could be produced with an integer number of bus cycles limits the choices available to around 2.

1. Use a QY4 clock of 32.0 MHz. with 512 bus cycles per Horizontal line. This produces a sync signal with a Horizontal frequency of 15.625 KHz. instead of 15.734 KHz.

2. Use a QY4 clock of 32.223 MHz. with 512 bus cycles per Horizontal line. This produces a sync signal with a Horizontal frequency of 15.734 KHz.

Unfortunately, while 32.0 MHz. is a standard frequency for both crystals and oscillator modules, 32.223 MHz. Is not.

And, although a 32.223 MHz. frequency could be synthesized it would mean using more hardware.

There is also the issue of the QY4’s maximum clock speed. The current QY4 data sheet specifies a maximum clock of 32 MHz. Since other members of the 68HC908 family (like the 68HC908GP32) allow a maximum clock of 32.2 MHz. we could probably get away with 32.223 MHz. if we promise to use a VCC of 5.0V and not less.

And the winner is:

I built the system using a 32.0 MHz. clock (and resulting 15.625 KHz. Horizontal sync) and it worked without any problems on the several TVs and VCRs I have at my disposal.

Now note on the FCC’s figure that the data consists of two 7-bit characters with parity. In case it’s not clear from the FCC’s figure, each character has its own parity bit. (And parity is odd).

[image: image8.wmf]50

25

0

-40

Start Bit

d5

P

d0

d1

d2

d3

d4

d6

d0

d1

d2

d3

d4

d5

d6

P

2 bits

IRE Units

Zero Crossing

Byte 2

Byte 1

The Closed Captioning Taskmaster

There are a number of steps required to get from knowing the time to sending it out to the TV.

In addition, because the Closed Captioning protocol only sends out two bytes/frame (and we have 29 frames/second) we can send out only 58 bytes/second. If we want to update the clock every second (and we do) then we only have 58 bytes to work with. Since the protocol requires considerable overhead this can be a real challenge.
In addition, some of the steps require more QY4 cycles than are available in a Horizontal line, so they are divided into smaller tasks and spread out over several lines.

We start with a Table (in Flash Memory)

* Requires even number of bytes

CCMSG:
FDB PRE+0,PRE+1,PRE+0,PRE+1

; repeat commands

FDB PRE+4,PRE+5,PRE+4,PRE+5

FDB ASCT+0,ASCT+1,COLON

; ASCII Time

FDB ASCT+2,ASCT+3,COLON

FDB ASCT+4,ASCT+5,SPACE,AMPM,AMPM+1,SPACE

FDB POST+0,POST+1,POST+0,POST+1

FDB $0000

; end of message (for my code)

Each entry points to a memory address (which may be in Flash or in RAM) which contains data.

The following are commands or constants so they are in Flash:

PRE:

FCB $14,$29
; Resume Direct Captioning

FCB $11,$20
; white (default)

FCB $11,$40
; white, Row 1

POST:

FCB $14,$24
; Delete to End of Row

COLON:
FCB $3A

SPACE:
FCB $20

The current time is in RAM. (One of the steps is to convert the time to ASCII characters because that’s what is used in Closed Captioning.)

ASCT

RMB 6 ; ASCII Time

Closed Captioning is sent on line 21 of Field 1 so we have all of Field 2 available to perform some of the tasks.

line 10: Read and debounce the switches and set the time

line 11: Do the clock

line 12: Convert time to ASCII for CC

The remaining lines are available for putting out video.

In Field 1:

If we are currently sending a CC Message:

line 10: Get the next CC data and make odd parity

line 11: Assemble the CC data into an executable table (part 1)

line 12: Assemble the CC data into an executable table (part 2)

line 13: Assemble the CC data into an executable table (part 3)

line 14: Assemble the CC data into an executable table (part 4)

line 21: Send out the next CC data pair in the current message

The remaining lines are available for putting out video.

As in the direct video character generator discussed previously, the QY4 is not fast enough to assemble the required bitstream while it is sending it. However, while the bitstream for the video character generator can be stored in Flash, the CC data is too dynamic and must be stored in RAM. Fortunately, we are only sending two bytes of data per frame and there is just enough RAM to do it.

So, at line 21, after sending the run-in clock and waiting during the 2-bit wait time, we JSR to the sequence of instructions (BSETs, BCLRs, and NOPs) dynamically assembled and placed in RAM.

Note that because we can only update the Closed Captioning display once per second, those applications that also display data also can only update the data displayed in Closed Captioning once per second. However, those applications that display the data in direct video as well as in Closed Captioning can update the direct video display every frame.

In addition to the FCC document for Closed Captioning (File: 47CFR15.doc), another very useful reference is Video Demystified by Keith Jack, LHH Technology Publishing, 2001. In addition to explaining Closed Captioning (which is sent on Field 1 line 21) it explains what’s on Field 2 line 21 (otherwise known as line 284).

To avoid leaving you in suspenders, I’ll give you a hint. Line 284 is for Extended Data Services and contains things like program rating, program name, program type, and a bunch of really interesting information that TVs and VCRs don’t display. (At least, mine don’t.)

[image: image22.jpg]05:28
:43 P

The picture at the right shows the hardware for the VCR Pacifier using Closed Captioning. It’s actually the same box used for the VCR Pacifier using Direct Video. It was wired to accept either the 28.63636 MHz. crystal (and associated components) or the 32 MHz. oscillator module.

VCR Pacifier - Clock Only, Clock Displayed Using Closed Captioning

Hardware: Closed Captioned Video (with Audio Inputs)

Software: clockcc.asm

[image: image23.jpg]2
R12
Daraln adet

10K
I SruEnsv

Because the sync is slower than NTSC we need to revisit the realtime clock. Since our VSync is slower (29.762 Hz. instead of 29.970 Hz. for standard NTSC) we would be 685.7 seconds short after 24 hours.

We will fix it by adding a count every 126 counts.
VCR Pacifier - Audio Input, Clock Displayed Using Closed Captioning, Audio Display #1

Hardware: Closed Captioned Video (with Audio Inputs)

Software: audio1cc.asm

Realtime Clock, Reads audio from adc0 and adc1 and displays it in BCD in Closed Caption and as moving bars in video.

Audio data is AC coupled, and is converted to Vp-p during sampling.

Data is sampled several times per frame (30 Hz).

[image: image24.jpg]021
284 ¢

[image: image25.jpg]04 : 26
t42 A

037
182

Closed Caption is updated once per second. Audio bars are updated every frame.

The bars take several seconds to move from the left to the right. The height of the bar indicates the maximum amplitude during the frame. Even at a frame period of 16 ms. it’s fast enough to keep time with speech or music.

VCR Pacifier - Audio Input, Clock Displayed Using Closed Captioning, Audio Display #2

Hardware: Closed Captioned Video (with Audio Inputs)

Software: audio2cc.asm

Realtime Clock, Reads audio from adc0 and adc1 and displays them in BCD in Closed Captioned and as bars in video.

Audio data is AC coupled, and is converted to Vp-p during sampling.

Data is sampled several times per frame (30 Hz).

Closed Caption is updated once per second. Audio bars are updated every frame.

[image: image26.jpg]

[image: image27.jpg]021

The audio in the picture at the right was louder than in the picture at the left.

VCR Pacifier - Data Input, Clock Displayed Using Closed Captioning, Data Display #1

Hardware: Closed Captioned Video (with Data Inputs)

Software: data1cc.asm

Realtime Clock, Reads data from adc0 and adc1 and displays it in BCD in Closed Caption and as moving bars in video.

Data is DC coupled, and is averaged during sampling.

Data is sampled several times per frame (30 Hz).

[image: image28.jpg]

[image: image29.png]12026027 »n 001 001

Closed Caption is updated once per second. Data bars are updated every frame.

(Since the display looks the same as the configuration for audio, I have used the same pictures.)

VCR Pacifier - Data Input, Clock Displayed Using Closed Captioning, Data Display #2

Hardware: Closed Captioned Video (with Data Inputs)

Software: data1cc.asm

Realtime Clock, Reads data from adc0 and adc1 and displays it in BCD in Closed Caption and as bars in video.

Data is DC coupled, and is averaged during sampling.

Data is sampled several times per frame (30 Hz).

Closed Caption is updated once per second. Data bars are updated every frame.

[image: image30.png]

[image: image31.jpg]284

(Since the display looks the same as the configuration for audio, I have used the same pictures.)

Development

Software Development

Software development was done using the free assembler and simulator software from P&E Microcomputer Systems (www.pemicro.com).

As previously noted, it is necessary to count cycles in many places. The P&E Microcomputer Systems Assembler is especially nice because it has switches to have the list file show cycle counts.

The exact string that I use is: casm08z.exe MYFILE S L D C
S – generate Motorola S19 object file

L – generate LISTING file

D – generate P&E DEBUG file

C – show cycle counts in listing file

In addition, their simulator is essential when working on a large number of functions that require counting cycles.

Hardware Development

[image: image32.jpg]!

I made my own simple hardware development system.
The schematics are included in the schematic package (Programmer for 68HC980QY4 in schems.pdf).
In addition to programming the QY4 there is a header for connecting it to the project being developed.

The toggle switch at the upper right turns power on and off (SW1).

The toggle switch at the lower right (SW2) switches between Programming and Development Modes.

In Programming Mode the QY4 receives a clock of 19.6608 MHz. which produces a Serial I/O speed of 19.2 Kbaud. SW2 also puts the QY4 into Monitor Mode after a Power-On Reset.

In Programming Mode PTA0 and PTA1 are connected as required for programming. PTA0 is used for serial communications, PTA1 is required to be high during Power-On Reset. After the QY4 has gotten into Monitor Mode PTA1 can be used by the target using the toggle switch at the middle right side (SW3). This feature is to allow you to use the P&E Debugger and did not prove to be especially useful for this project because Debug Mode must be run using the 19.6608 MHz. clock. Mostly it was a
nuisance because if it is in the wrong position (Development instead of Programming) PTA1 is connected to the target and if PTA1 is not high the QY4 does not go into Monitor Mode.

When SW2 is in Development Mode, the QY4 receives the clock required by the target circuit, PTA0 and PTA1 are connected to the target board, and the QY4 comes up in User Mode.

[image: image33.jpg]1225158 »n 064 6

The original NTSC application required a clock of 28.63636 MHz. and used a crystal for that purpose in the standard CMOS crystal oscillator circuit shown to the right. (At this frequency R2 is not needed.)

However, the applications using Closed Captioning required 32 MHz. By then, I had already built the board and did not have space to add a 32 MHz. oscillator module close to the QY4.

When I used a 32 MHz. crystal in place of the 28.63636 MHz. crystal the circuit refused to oscillate at 32 MHz. The frequency was much lower, more like 10 MHz.

Here’s why.

Crystals are made of a piezoelectric material like quartz. Applying a mechanical force to the material produces an electric field, and applying an electric field to it causes it to mechanically distort.

Mechanical resonances in the material create electrical resonances. That’s why they are used as more or less stable frequency determining elements. (We will not go into parallel versus series resonance.)

The resonant frequency of a crystal is determined by its physical dimensions, in particular its thickness.

However, starting at about 30 MHz. the crystal would be too thin, and thus, fragile.

As a result, crystal manufacturers optimize the crystal’s shape to produce harmonics (called overtones) of the main resonant frequency. Crystals up to 30 MHz. are generally fundamental-mode devices.

Starting at about 30 MHz. they are optimized for third harmonic operation. At VHF frequencies they may be designed for fifth overtone operation.

What this means is that a 32 MHz. crystal has a fundamental mode frequency of about 10.6 MHz. and if you use it in a circuit like the standard CMOS circuit show above, it will oscillate at 10.6 MHz. just like mine did.

In order to get it to oscillate at its third overtone frequency (32 MHz.) we have to add some components.

Oscillator design is more an art than a science but the following circuit did the trick.

[image: image9.jpg]2563636 MHz o 32 MHz
Fundamental or Thisd Overtane

osci ula osc2

@

1000pF

12 Turms 430 Wike- Wap L
on a 4" Nylon Standoff.
Closely Spaced (14") L2uk

Inductor L1 forms a parallel resonant circuit with capacitor C1 at about 30 MHz. Capacitor C2 is a DC blocking capacitor. Resistor R2 is no longer optional.

The 30 MHz. resonant circuit presents a high impedance at 30 MHz. and a low impedance at other frequencies (higher or lower), like 10 MHz.

As a result, the feedback to the input of U1A is frequency dependant and is the greatest at about 30 MHz. Therefore the circuit oscillates at the crystal overtone at 32MHz. and not the fundamental at 10.6 MHz.

This circuit also works connected directly to the QY4 by omitting U1A and connecting OSC1 and OSC2 to the corresponding QY4 pins. (The QY4 has a CMOS inverter connected between its OSC1 and OSC2 pins.)

With the circuit as shown in the schematics I can install either a 28.63636 MHz. or 32 MHz. crystal and it just works. (Note that I made L1 myself. It’s easy, try it.)

Bonus - Video Line Trigger

In trying to figure out how to generate a Closed Captioning signal I looked at the Closed Captioning signal produced from a variety of sources: DVD Player, VCR, C-Band Satellite (analog), and Over-The-Air TV.

While my trusty Tektronix 2215 oscilloscope has a TV Sync Trigger, the trace is very dim when viewing signals that occur only once every 16 ms. And, while my Tektronix 2445 produces a brighter trace it lacks a TV Sync Trigger.

I have an unrelated project that uses a National LM1881 sync separator IC. Not only does the IC produce Composite Sync and Vertical Sync, it also outputs an Odd/Even Field signal. All I had to do was fire up the board and attach the ‘scope to get a nice Frame Sync trigger.

Since I had lots of unused space on the prototype board I added a QY4 to count VSyncs and produce a trigger signal at line 21.

I also wanted to look at line 284 so I added another output that goes high during line 284 and connected it to the ‘scope’s Channel 2. (The Video is connected to Channel 1.) Then I set the ‘scope to add Channel 1 and Channel 2. (The Trigger Output is connected to the ‘scope’s external trigger input.)

The result is to provide an offset voltage to separate the line 21 and line 284 traces.

Then I thought it would be nice to be able to select other lines to look at.

Since I had already used the QY4 as a simple character generator I decided to use it to display the lines selected by pushbuttons.

Using a single QY4 to count the lines from the video signal and to produce the on-screen display would have required that the QY4 be synchronized to the video signal. While that is certainly possible, it was cheaper and easier to just add another QY4.

To make it even easier, I ran both QY4s from the same 32 MHz. oscillator module. (Dividing it into 508 cycles per Horizontal line produces a Horizontal Sync of 15.748 KHz. which is between color sync and monochrome sync.)

[image: image34.jpg]

The circuit is part of the schematic package (File: schems.pdf) and the software for both QY4s is in the Software package (File: progs.zip).

In the picture at the right, the parts inside the areas outlined in red are the ones used in this application.

The first QY4 (MCU1) keeps track of the lines from the Video Source and produces outputs at the selected line(s) as described above. The second QY4 (MCU2) reads the

switches to select the lines(s), sends the line selection to MCU using a simple synchronous serial protocol, and produces the video display showing the line(s) selected.

Because not everyone has a two-channel ‘scope with the ability to add the channels together I put in a jumper header, connected to both MCUs, to tell them whether to do two lines or just one.

The default for MCU1 is to look at lines 21 and 284 (or just line 21). If you just want to look at these lines you can leave out MCU2. In that case, since you also won’t need the video output circuitry, make sure you ground the inputs to U3A, U3B, and U3C so they are not left floating.

[image: image35.jpg]

This is the display of the dual channel mode. Switches SW4 and SW5 increment/decrement the line number of Trigger #1.
[image: image36.jpg]

After pressing switch SW3, switches SW4 and SW5 will increment/decrement the line number of Trigger #2.
[image: image37.jpg]Clock

r2
15K

2863636 MHz

This is the display of the single channel mode. Switches SW4 and SW5 increment/decrement the line number of the trigger.
[image: image38.jpg]

After pressing switch SW3 the trigger changes to line 284, which is Field 2 line 21.

The following pictures were taken using a Tektronix 2445 Oscilloscope. The various devices were connected to the Video Line Trigger through 20’ of RG-59 coax. Notice that some signals are cleaner than others. Also note that the Closed Captioning signal on the VCR starts and ends later than the others, although once it starts, it does follow the Closed Captioning specification.

What is not apparent from the pictures is that with signals that are Macrovision encoded, the Video Line Trigger line numbers are wrong due to the extra sync pulses inserted into the Vertical Blanking Interval by the Macrovision process.

Toshiba SD-2700 DVD player, playing “Groundhog Day” (1993).

DVD sending ‘zeros’:
[image: image39.jpg]RET YRR \- -

v“nh'-.-— po—

The first bit after the run-in clock is the Start Bit. Then it sends seven ‘zeros’ and a parity bit. Since it uses odd parity the parity bit is a ‘one’. Then it sends seven more ‘zeros’ and a parity bit.
[image: image40.jpg]Hitits b om v b

vlllhlﬁﬁﬁ‘pm
d

DVD sending data:
[image: image41.jpg]

This shows the timing between the last zero-crossing of the run-in clock and the start bit.

[image: image42.jpg]- —
— - —— =

oW

Toshiba M-775 VCR playing Wallace and Gromit: The Wrong Trousers (1993). Notice the funky color burst. Possibly the VCR did not like driving the 20’ of RG59U I was using. (Although the DVD player didn’t seem to mind.)

[image: image43.jpg]

VCR sending data:
[image: image44.jpg]

C-Band Satellite (Analog) using a Uniden Supra receiver. The program was on the PBS transponder. Notice how clean the signal is.
[image: image45.jpg]™ Aljie @ LIRS]

*- 1108 o —— N —

Sending data:

Another transponder signal: Line 38 – one line of a color bar test pattern:

Test Signal, Line 16:

Line 14 – another data stream:

Here it is in two-channel mode showing a bitstream on line 18 and the Closed Captioning signal on line 21.

The Video Line Trigger was a quick project to allow me to see line 21 in order to get my own Closed Captioning software to work. There are some things that it does not do:

1. It cannot be set to lines within the Field 1 Vertical Banking Interval.

2. In two-channel mode it cannot be set to consecutive lines.

3. It does not detect Macrovision-encoded video and correct for the extra sync pulses that Macrovision inserts during the Vertical Banking Interval.

The Video Line Trigger is useful for selecting and examining video lines using oscilloscopes that do not have a TV Sync feature.

It is also useful with inexpensive oscilloscopes that do not have a dual time base.

Even with oscilloscopes with a dual time base, it allows you to examine selected lines without having to count sync pulses.

NTSC Video: Background

The National Television Service Committee (NTSC) was a committee set up in 1936 by the Radio Manufacturers Association (RMA), now the Electronic Industries Association (EIA), to recommend to the FCC the standards for commercial television broadcasting service in the United States.

The first standards (for monochrome) were adapted in June 1941. However, the development of television broadcasting was soon interrupted by the United States' entry into the Second World War and did not resume until the end of the War in 1945.

The monochrome standard calls for a horizontal rate of 15.750 KHz, a vertical rate of 60.0 Hz, and two interlaced fields of 262.5 lines to produce 512 lines per frame at 30 Hz.

The reason for choosing 60.0 Hz for the vertical rate was because 60.0 Hz is the power line frequency in the United States. Since the transistor would not be invented until 1947 (and it would be several more years before it would be improved enough to use in TVs), electronics meant vacuum tubes which required operating voltages of several hundred volts (more or less). Power supplies used passive filters with capacitors and, sometimes, also inductors. (Vacuum tubes were too expensive to be used as voltage regulators.)

As a result, there was a significant amount of power supply ripple present compared to the level of the video signal and it was difficult to keep the power supply ripple out of the video. The effect on the display is to produce hum bars.

Although making the frequency for the vertical rate the same as the power mains would not reduce the hum bars, at least they would be stationary and not constantly moving through the picture which would make them even more noticeable. (In Europe, where the power line frequency is 50.0 Hz, they used a vertical frequency of 50.0 Hz.)

The standards for color were adopted in December 1953 after several years of wrangling and jockeying for position by the companies having a stake in the outcome. The FCC originally adopted the field-sequential method proposed by CBS which used a rotating color wheel and was incompatible with the existing monochrome standard. The method proposed by RCA was compatible with existing receivers but produced extremely poor pictures. It used a pixel-sequential method that was beyond what the technology of the time was capable of reliably supporting. The system that ultimately emerged was the result of the contributions of several companies, notably Hazeltine, General Electric, and Philco.

The NTSC color standard makes use of the fact that the human eye has a lower bandwidth for color than it has for grayscale details.

The grayscale values of the color picture are sent in baseband video at relatively high bandwidth. The color information is sent on a color subcarrier at a much lower bandwidth. (Technically, what is sent is a pair of two color difference signals in quadrature.)

Monochrome receivers don't see the color subcarrier and simply display the grayscale picture.

The color standard calls for the color subcarrier to be 3.579545 MHz. and requires that the horizontal frequency be a ratio of 2/455 times the color subcarrier, for a frequency of 15.734 KHz. There are still 262.5 lines per field which gives a vertical frequency of 59.94 Hz. and a frame rate of 29.97 Hz.

The reason for specifying the horizontal frequency to be such an odd subdivision of the color frequency is so harmonics of the horizontal frequency do not interfere with the color subcarrier.

Scaling everything up from 60.0Hz (with a 15.750 KHz horizontal frequency) would have required a color subcarrier of 3.583125 MHz. Presumably, there were good technical reasons for not doing this. Perhaps scaling everything up from 60.0Hz would have made the video bandwidth interfere with the existing TV sound carrier at 4.5 MHz. or maybe the 4.5 MHz. sound would have interfered with the color subcarrier.

Links

Motorola: 68HC908QY4 Product Summary Page: http://e-www.motorola.com/
Use Search and type: 68HC908QY4 Product Summary
Then select the 68HC908QY4 Product Summary Page.

P&E Microcomputer Systems: www.pemicro.com
General Distributors: www.digikey.com www.mouser.com
FCC:
Part 73.699 Figures - NTSC standards for Broadcast Television

www.access.gpo.gov/nara/cfr/waisidx_02/47cfr73_02.html

(Scroll down to FCC 73.699 TV engineering charts and select the PDF version).

Part 15.119 - FCC Protocol for Closed Captioning

www.access.gpo.gov/nara/cfr/waisidx_02/47cfr15_02.html
(Scroll down to FCC 15.119)

Part 73.682 (a) (22) - FCC technical standards for Closed Captioning

www.access.gpo.gov/nara/cfr/waisidx_02/47cfr73_02.html

(Scroll down to FCC 73.682)

Files: FCC Part 73.699 NTSC Figures:

ntscfcc.PDF
FCC Part 73.699 NTSC Figures Redrawn:

ntscfigs.pdf
FCC Part 15.119 Protocol Standards for Closed Captioning:

47CFR15.doc
Schematics for Applications:

schems.pdf
Software for Applications:

progs.zip

NTSC Web site: http://ntsc-tv.com/ntsc-index-01.htm

A web site for the history of early color television by Edwin Howard Reitan, Jr.:

 www.novia.net/~ereitan/
More television links: http://history.acusd.edu/gen/recording/television0.html

Recommended References:

Video Display Engineering by Jerry Whitaker, McGraw-Hill, 2001.

Video Demystified by Keith Jack, LHH Technology Publishing, 2001.
_1115325722.bin

_1115664662.bin

_1115798465.bin

_1115798819.bin

_1115664520.bin

_1115324679.bin

