US006650694B1

United States Patent

(12) (10) Patent No.: US 6,650,694 B1
Brown et al. 5) Date of Patent: Nov. 18, 2003
(549) CORRELATOR CO-PROCESSOR FOR CDMA 6,198,765 B1 * 3/2001 Cahnet al. ...c.ccccunee.... 375/142
RAKE RECEIVER OPERATIONS 6,584,313 B2 * 6/2003 Butler et al. 455/434
(75) Inventors: Katherine G. Brown, Coppell, TX * cited by examiner
(US); Sundararajan Sriram, Plano,
TX (US); Francis Honore, Houston,
TX (US); Kang Lee, Richardson, TX Primary Examiner—Tesfaldet Bocure
(US) Assistant Examiner—Qutbuddin Ghulamali
(73) Assignee: Texas Instruments Incorporated, (74) Antorney, A.gent, or Firm—Ronald O. Neerings; Wade
Dallas, TX (US) James Brady III; Frederick J. Telecky, Jr.
(*) Notice: Subject to any disclaimer, the term of this 7 ABSTRACT
%atsenct lisz)égsnge%gg gd]usted under 35 A programmable, flexible, vector correlation engine for
S.C. ays.
y Y CDMA mobile and base station chip rate signal processing.
(21) Appl. No.: 09/607,410 A correlator co-processor (CCP) performs the de-spreading
) Filed: Jun. 30, 2000 tasks for a RAKE receiver, early/late correlations for time
(22) Flled: un- = tracking, and has provision for coherent accumulation of
Related U.S. Application Data different lengths. The CCP also performs energy estimation
(60) 56(6‘61510“31 application No. 60/183,457, filed on Feb. 18, and non-coherent accumulation functions. The CCP can also
' , perform correlation functions required for delay profile
(zi) glts (éll """"""""""""""" HO4B 13/359’11;1343]37(1)/ ;2; estimation, and for search/acquisition functions. The same
E 58; Fi-el-d o f Search """"""""""""""" /37 5 /’1 30 /1 4 centralized Data Path is used to perform all these functions;
375/145,147,149,150, 370/208: 209: a common controller generates signals into the Data Path in
342, 335 response to tasks initiated by a host processor (e.g., DSP).
56 Ref Cited The tasks written into the CCP are performed effectively in
(56) elerences LALe parallel by the CCP Data Path.
U.S. PATENT DOCUMENTS
5,764,687 A * 6/1998 Eastonc.cc....... 375/147 33 Claims, 21 Drawing Sheets
106 108
N Rx [
SOURCE SOURCE
0 1
L
weut Burrers 192 162
0 ! 6ee 1})0
NF/
!
e aill .
DATA PATH GENERATORS
150 1/8 0
WL contmouer e sk BUFFER |
I 160
! /
o5~ || e | ™ |
—
FINGER | PSC o JFNGERT ¢
o Lo BUFFER | BUFFER | BUITER pumreR | BUFFER
106 | 118 | 114 | 140 | 116 | 42001 115
— T T T 7]
[! ! - ‘a - lv\ t
108~ 104 190-1
FINGER INTERRUPT

SYMBOL BUFFER
EXTERNAL BUS

U.S. Patent

Nov. 18, 2003

Sheet 1 of 21 US 6,650,694 B1

106 108
\Rx Rx ’
SOURCE SOURCE
0 :
b
INPUT BUFFERS 102 ’}32
0 ! 6CC 100
~ /
110,
PN AND 112 CORRELATOR
WALSH b COPROCESSOR
DATA PATH GENERATORS
50 180
300 i /
1 CONTROLLER < TASK BUFFER
160
¥ /
165~ INTERRUPT | [CONFIGURATION |,_[CONFIGURATION
GENERATOR TABLES TABLES
t \
160
1) 4 9 4
SF"!’:&%%T, SEEASR((::H ppE | ssc | EoL F’SE,ER LCl
STMBOL | SCARCH | BUFFER | BUFFER | BUFFER | g W% | BUFFER
106 | 118 | 114 | 140 | 116 | 4200 115
y 1 4 1 4 \ | i
RHEA BUS
7
108 104 479
\ y
FINGER INTERRUPT
SYMBOL BUFFER
EXTERNAL BUS FIG. 1

U.S. Patent Nov. 18, 2003 Sheet 2 of 21

US 6,650,694 B1

200
 DPCCH__,_ DPDCH _,_ DPCCH .. DPOCH e DPCCH_,
| il M) ! bl Il
TFCI DATA! PC DATAZ PiLOT
N1eC1B!TS | Ngota1BITS | Nypg BITS Ngoto2 BITS Nopitot KBETS
S S
204 202
} it |
) Tt =2560 CHIPS, 10s2K BITS(k=0..7)
FIG. 2
302 CONT{R;LLER 300
INPUT DATA COHERENT
BUFFERS) MEMORY FSB EXT I/F
122 FINGER |22 L7,
ADDER + 1 SYMBOL
TREES O/ BUFFER .
114,116
-304] Ee R
BUFFER 104
308
110 RMS + "1 ARBITRATOR -
iy A BUS
GENERATOR NONCOHERENT PSC
SCRATCH SEARCH
FFER
WALSH MEMORY BU \E
GCENERATOR 306 Na

o FIC. 3

U.S. Patent Nov. 18, 2003 Sheet 3 of 21 US 6,650,694 B1

CCP ITERATION
(400 1400 400 L1400 1400

NN | . PG 4
GCC=16+N GCC=16¢(N+2)
GCC=16+(N+1)
502
I/Q DATA
300
CCP_clk —» ‘—L FSB_ext_bus
CCP
FIG. § resetln—=
100
6CC—s ——R-vinterrupts
170
RHEA_bus<7-*
104
wé w3 w2 wl w0 180
Task_Buffer_t0 ' <
Tosk_Butfer_t1
. [+
0 [+}
. o
Tosk_Buffer_t39 | I l l]
FIG. 6
15-0 (R/W)
Task_Buffer_t0_w0 FIRST WORD OF TASK BUFFER ENTRY
Task_Buffer_t0_w1 SECOND WORD
Task_Buffer_t0_w2 THIRD WORD
Tosk_Buffer_t0_wJ FOURTH WORD
Task_Buffer_t0_w4 LAST WORD QF TASK BUFFER ENTRY

FIG. 7

U.S. Patent Nov. 18, 2003 Sheet 4 of 21 US 6,650,694 B1

15-0 (R/W)
Tosk_Req_w0 REQUEST FOR TASKS 15-0
Tosk_Req_w1 REQUEST FOR TASKS 31-16
Tosk_Req_w2 REQUEST FOR TASKS 47-32
Task_Req_w3 REQUEST FOR JASKS 63-48
FIG. 8
900
9 8-7 6 5 4 3-0 (R/W)
TASK | START/STOP | START/STOP | LOAD/ | LOAD/ TIMING sLov
REQUEST ENABLE ID] RELOAD| RELOAD ADJUST| NUMBER
ID . ‘ ENABLE D ENABLE
{ ((3))
902 904 906 908 910 912
FIG. 9
1000
1002
15-10 9 8-6 5-3 2-0 (R/W)
FINGER| UNUSED| HALF- sLot TPC PILOT
INTERRUPT SLOT| INTERRUPT| INTERRUPT| INTERRUPT
TABLE ENABLE | CONTROL| CONTROL CONTROL
7 { N
1010 1012 1004
FIG. 10
1004
1086 2 1098 1-0
INTERRUPT CONTROL| _ ~ INTERRUPT ENABLE | ~ FIFO NUMBER]
FIG. 11
15-8 7-0 (R/W)
Update_Cycle | UNUSED | TASK-UPDATE CYCLE]

FIG. 12

U.S. Patent Nov. 18, 2003 Sheet 5 of 21 US 6,650,694 B1

1300
WALSH
POINTERS WALSH TABLE
ADOR ENTRY
0 Waish_S0_ST0]
1 Waish_S0_ST1
0 ° >1310
[+]
13027\ 7 T Weshso.s7__],
» Q
. (o]
. [»)
248 Walsh_S31_510
249 Walsh_S31_ST1
31 0 e1312
[e]
1304 255 Wolsh_S31.517 1]
256 Walsh_S32_5T0]
257 Waish_S32_3ST1
3 258 Walsh_S32_ST2 1914
1306\ | 259 Wolsh_532_ST3
o °
. [+]
/ 380 Waish_S63_ST0
. 381 Wolsh_S63_ST1
63 382 Walsh_S63_S72 1316
1308 383 Walsh_S63_5T3
FIG. 138
15-0 (R/W)
Wolsh_S5_ST3_w0 [WALSH SUB—TASK ENTRY FOR WALSH SET 5, SUB-TASK 3]

FIG. 14

U.S. Patent Nov. 18, 2003 Sheet 6 of 21 US 6,650,694 B1

1500

FSB CONFIGURATION TABLE

ADDR ENTRY

0 FSB_Config_FO_WIDO
1 FSB_Config_FO_WID!

-]
(]
o]

[7 [FSB_Config FO_WID7 |

o
o

8 ENTRIES FOR °

EACH FINGER 748 | FSB_Config_F31_WIDO
249 FSB_Config_f31_WID1

[o]

o]

[+]
255 FSB_Config_F31_WID7

256 FSB_Config_F32_WIDO
257 | FSB_Config_F32_WIDT
258 | FSB_Config_F32_WIDZ
259 | FSB_Config F32_WID3

o]
[¢]
]

380 | FSB_Config_F63_WIDO
381 | FSB_Config_F63_WID1
382 | FSB_Config_F63_WID2
383 | FSB_Config_F63_WID3

4 ENTRIES FOR
EACH FINGER

FIG. 15
15-0 (R/W)
FSB CONFIGURATION TABLE WORD O START ADDRESS FOR FIRST SLOT
FSB CONFIGURATION TABLE WORD 1 ADDRESS OFFSET FOR NEXT SLOT

FIG. 16

US 6,650,694 B1

Sheet 7 of 21

Nov. 18, 2003

U.S. Patent

6L OId
[0033 [1 04 [Z 0Jid]€ 04id [yowyd [WIISAS | Q3SONN | aiqou3 ydnaiaiu|~iowsapg
0 | 4 ¢ ¥ S 9-Gl

8L 9OId

Gl 107S ‘I NOILJO ¥04 SilE 101ld ALISY3AIQ

Gl 107S 'L NOILJO ¥04 S118 101ld

-
-
*

| 107S ‘L NOIIdO 304 S118 107id ALISY3AIQ

1 107S ‘I NOLIJO ¥04 SLI8 101id

0 107S ‘I NOILO Y¥04 S1IE 1011d ALISY¥3AIC

0 107 ‘I NOLJO ¥0J SLI9 1011d

(m/¥) 0-G1

L Old

IMTGH0ISTLTSHg ond
OM G HOISTL TSIg T I0d

4710571 Tsig oid
01105 T 1 TSYE 101
I T00IS T LTS T i01d
oM Ol0IS ™1 TSI TIoNd

00L 4 ~Fy3annN 108MS 2dl GISANN

y4~04S S04 " d1L 1old

80L1~J1"N01933 107Id 403 Y3BNAN T0BAAS ONIONI | G3SONN

£MT0457S0d™Jd1 " 10ld

{WT045780d0d1 10ld

07 11} _NOIO3 1011d 404 YIANON T08NAS ONILEYLS | OISNNN

L7045 7S0d0d1 10ld

90/ | 10 NOI93 10TId Y03 3BANN T0GIUS ONION3 | GISIN

0MT0357S0d " JdL 10lld

70/ |10 NOI934 10TId 404 SIGMNN TOBMAS ONLLYIS | QISANN
(m/¥) 0-6 01-G1

U.S. Patent Nov. 18, 2003 Sheet 8 of 21 US 6,650,694 B1

15-0 (R/W)
PSCO 50
PSCt PSCI
FIG. 20
15-0 (R/W)
SSCO| ssco}
FIG. 21
15-14 13-5 4-0 (R/W)
ENERGY ACCUMULATION -
pARAMETERS L UNUSED NTS N1s
FIG. 22
SEARCH CODE o 3-0 (R/W)
H
SBon LocATIon L__UNUSED _SYBOL NUMBER FOR SEARCH CODE |
FIG. 23
2400
START/CONTINUE -0 P - 0 (R/W)
TART/CONTINU ,
COMMAND L UNUSED [STEP VALUE | START ENABLE BIT]
FIC. 24
SOFTWARE RESET
COMMAND L— VALUE IMMATERIAL |
FIG. 25
15-0 (R)
CCP_Stotus | STATUS BITS (18D)]

FIG. 26

U.S. Patent

Nov. 18, 2003

Sheet 9 of 21

15-0 (R)

Tosk_Run/Stop_w0

RUN/STOP STATUS FOR TASKS 7-0

Tosk_Run/Stop_w1

RUN/STOP STATUS FOR TASKS 15-8

Tosk_Run/Stop_w2

RUN/STOP STATUS FOR TASKS 23-16

Task_Run/Stop_w3

RUN/STOP STATUS FOR TASKS 31-24

Task_Run/Stop_w4

RUN/STOP STATUS FOR TASKS 39-32

Tosk_Run/Stop_w5

RUN/STOP STATUS FOR TASKS 47-40

Task_Run/Stop_wb

RUN/STOP STATUS FOR TASKS 56-48

Tosk_Run/Stop_w7

RUN/STOP STATUS FOR TASKS 63-56

FIG. 27

15-0 (R)

Task_Ping/Pong_w0

PING/PONG STATUS FOR TASKS 7-0

Task_Ping/Pong_w1

PING/PONG STATUS FOR TASKS 15-8

Tosk_Ping/Pong_w2

PING/PONG STATUS FOR TASKS 23-16

Task_Ping/Pong_w3

PING/PONG STATUS FOR TASKS 31-24

Task_Ping/Pong_wé

PING/PONG STATUS FOR TASKS 39-32

Task_Ping/Pong_w5

PING/PONG STATUS FOR TASKS 47-40

Task_Ping/Pong_w6

PING/PONG STATUS FOR TASKS 56-48

Task_Ping/Pong_w7

PING/PONG STATUS FOR TASKS 63-56

FIG. 28

Tosk_Update_Time |

2900
2982 V/ 15-0 (R)
' GCC at Task_Update Boundary |
FIG. 29
15-8 7-0 (R)

Cycle_Count |_

UNUSED| NUMBER OF CYCLES EXPENDED IN ITERATION |

FIG. 30

15-0 (R)

GCC COUNT |

CURRENT GCC VALUE |

FiG. 31

US 6,650,694 B1

U.S. Patent

15-5

Nov. 18, 2003

Sheet 10 of 21 US 6,650,694 B1

4 3 2 1 0

Int_Error_Event_Status
Register

UNUSED

CYCLES| FIFO 3] FIFO 2| FIFO 1| FIFO O
EXCEEDED | OVERFLOW { OVERFLOW { OVERFLOW { OVERFLOW |

FIG. 32

3300
Int_System_Event_Stot kal 0 ®)
nt_System_Event_Stetus

Register L UNUSED | — TOSk'Updm
FIG. 38 3302
15-4 3 2 1 0
FIFO EMPTY STATUS | UNUSED| FIFO 3| FIF0 2] fir0 1] FIFO 0]
FIG. 34
FIFD 0 STATUS -0 +0)
REG*STERI UNUSED | NUMBER OF ENTRIES]
FIG. 35
FIFO 1 STATUS >0 >0 ()
REG‘STER(UNUSED | NUMBER OF ENTRIES]
FIG. 36
FIFO 2 STATUS 0 Ay
REGISTER} UNUSED | NUMBER OF ENTRIES]

FIG. 37

U.S. Patent Nov. 18, 2003 Sheet 11 of 21

US 6,650,694 B1

FIFO 3 STATUS D >0)
REG,STERI UNUSED | NUMBER OF ENTRIES|
FIG. 38
3900
3902~ 15-14 13 12 1 10 9-6
FIFO_wO [BUFFER SLOT | 1/2 SLOT SLoT TPC| PILOT| OPCODE| TASK ID
. NUMBER | INTERRUPT | INTERRUPT| INTERRUPT | INTERRUPT
7
3904~ 3906 45_14 13-12 11-8
FIFO_w1| UNUSED] GCC FRAME | GCC SLOT| GCC CHIPS DIV 16]
FIG. 39
4000
31-16 (R) 15-0 (R)
FSB ENTRY | SYMBOL (REAL PART)[SYMBOL (IMAGINARY PART)]
FIG. 40
4100
31-24 (R) 23-16 (R) 15-8 (R) 7-0 (R)
FSB ENTRY,| EVEN SYMBOL| EVEN SYMBOL| ODD SYMBOL| ODD SYMBOL
SF=4 ONLY| (REAL PART) (IMAGINARY | (REAL PART) (IMAGINARY
PART) PART)
FIG. 41
4200
FINGER MAX 150 ®)
BUFFER ENTRY L ENERGY OF LARGEST SYMBOL IN SLOT]

FIG. 42

U.S. Patent

EOL BUFFER FO dwQ
EOL BUFFER FO dwl
EOL BUFFER FO dw2

.

.

EOL BUFFER F63 dwQ
EOL BUFFER F63 dwl
EOL BUFFER F63 dw2

Nov. 18, 2003

Sheet 12 of 21

4300
31-24 (R) 23-0 (R)
UNUSED FINGER 0: EARLY ENERGY
UNUSED FINGER O: ON-TIME_ENERGY
UNUSED FINGER 0: LATE_ENERGY
UNUSED FINGER 63: EARLY ENERGY
UNUSED| __ FINGER 63: ON—TIME ENERGY
UNUSED FINGER 63: LATE_ENERGY
FIG. 43
23-0 (R)

DPE BUFFER BLOCKG dw0

ENERCY VALUE FOR BLOCK O, CHIP-OFFSET 0

DPE BUFFER BLOCKO dw1

ENERCY VALUE FOR BLOCK 0, CHIP-OFFSET 1/2

-

DPE BUFFER BLOCKO dw62

ENERGY VALUE FOR BLOCK 0, CHIP~OFFSET 31

DPE BUFFER BLOCKO dwb3

ENERGY VALUE FOR BLOCK 0, CHIP-OFFSET 31 1/2

DPE BUFFER BLOCK1S dw0

ENERGY VALUE FOR BLOCK 15, CHIP-OFFSET 0

DPE BUFFER BLOCK15 dw!

ENERGY VALUE FOR BLOCK 15, CHIP-OFFSET 1/2

DPE BUFFER BLOCK1S dwb2

ENERGY VALUE FOR BLOCK 15, CHIP-OFFSET 31

DPE BUFFER BLOCK1S dwbd

ENERGY VALUE FOR BLOCK 15, CHIP-OFFSET 31 1/2

FIG. 44

US 6,650,694 B1

U.S. Patent

LCl BUFFER BLOCKO dwQ
LCI BUFFER BLOCKO dwi

LCI BUFFER BLOCKO dwtd
LC! BUFFER BLOCKO dw1d

*
.

LCl BUFFER BLOCK7 dw0
LCI BUFFER BLOCK7 dw!

LCl BUFFER BLOCK7 dwi4
LCl BUFFER BLOCK7 dw13

Nov. 18, 2003

Sheet 13 of 21

23-0 (R)

ENERGY VALUE FOR BLOCK 0, CODE 0, ON-TIME

ENERGY VALUE FOR BLOCK 0, CODE 0, LATE-TIME

*
.
.

ENERGY VALUE FOR BLOCK 0, CODE 7, ON-TIME

ENERGY VALUE FOR BLOCK 0, CODE 7, LATE-TIME

ENERGY VALUE FOR BLOCK 7, CODE 0, ON-TIME

ENERGY VALUE FOR BLOCK 7, CODE 0, LATE-TIME

ENERGY VALUE FOR BLOCK 7, CODE 7, ON-TIME

ENERGY VALUE FOR BLOCK 7, CODE 7, LATE-TIME

FIG. 45

15-0 (R)

PSC SEARCH BUFFER w0

PSC SEARCH RESULT FOR OFFSET O RELATIVE T0O GCC

PSC SEARCH BUFFER wi

PSC SEARCH RESULT FOR OFFSET 1/2 RELATIVE TO GCC

US 6,650,694 B1

PSC SEARCH RESULT FOR OFFSET 2559 RELATIVE T0 GCC
PSC SEARCH RESULT FOR OFFSET 2559 1/2 RELATIVE 10 GCC

FIG. 46

PSC SEARCH BUFFER w5118
PSC SEARCH BUFFER w5119

U.S. Patent

FIRST HALF
SSC CIRCULAR BUFFER O w0
SSC CIRCULAR BUFFER 0 wi

SSC CIRCULAR BUFFER O wid

SSC CIRCULAR BUFFER 7 w0
SSC CIRCULAR BUFFER 7 wi

SSC CIRCULAR BUFFER 7 w15
SECOND HALF

SSC CIRCULAR BUFFER 0 w0
SSC CIRCULAR BUFFER 0 w!

SSC CIRCULAR BUFFER 0 wiS

SSC CIRCULAR BUFFER 7 w0
SSC CIRCULAR BUFFER 7 wi

SSC CIRCULAR BUFFER 7 wi5

4802

Task_Update interrupt

Nov. 18, 2003

32-16 (R)

Sheet 14 of 21

15-0 (R)

SSC SYMBOL (REAL PART)

SSC SYMBOL {IMAGINARY PART)

SSC SYMBOL (REAL PART)

SSC SYMBOL (IMAGINARY PART)

SSC SYMBOL (REAL PART)

SSC SYMBOL (IMAGINARY PART)

SSC SYMBOL (REAL PART)

SSC SYMBOL (IMAGINARY PART)

SSC SYMBOL (REAL PART)

SSC SYMBOL (IMAGINARY PART)

SSC SYMBOL (REAL PART)

SSC SYMBOL {IMAGINARY PART)

PSC SYMBOL (REAL PART)

PSC SYMBOL (IMAGINARY PART)

PSC SYMBOL (REAL PART)

PSC SYMBOL (IMAGINARY PART)

PSC SYMBOL (REAL PART)

PSC SYMBOL (IMAGINARY PART)

PSC SYMBOL (REAL PART)

PSC SYMBOL (IMACINARY PART)

PSC SYMBOL (IMAGINARY PART)

PSC SYMBOL (RFAL PART)

PSC SYMBOL (REAL PART)

PSC SYMBOL (IMACINARY PART)

FIG. 47

_ Tosk_Updote_Cycle + 16 CHIP PERIODS

16 CHIP PERIODS
-

1

[SQUIONPHIN PUOURI S-SR
/
/
/
’
y

~
M
~

|_ MAX_CYCLES CYCLES=1 [TERATION ™)

l
FIG. 48

US 6,650,694 B1

U.S. Patent Nov. 18, 2003 Sheet 15 of 21 US 6,650,694 B1

fi}oo
6182
STOPPED STARTING ADDRESS —> 1-6104
OFFSET
BETWEEN
SLOTS
6106
WAITING
10 STOP
FIG. 49 FIG. 61
5000
IDLE SLOTS
_FIRST FRAME ____~ i " SECOND FRAME
#1 N fiest) Njgst +1 £15
4 DOUBLE - FRAME
METHOD
RELOAD FINGER STOP FINGER START FINGER RELOAD FINGER
OB (3N N 5N
5002 5004 5006 5008
FIG. 50
51300
5282 15 5284 14-12 11-9 5286 8-0
Woish_Sub-Task_wO [~ WALGH DISABLE] _ WALSH ID | UNUSED | WALSH CODE |

FIG. 52

U.S. Patent

Nov. 18, 2003

Sheet 16 of 21

5100
15-12 11-9 8 7-6 5-0
Finger_Task_w0 [, OPCODE | UNUSED| _ Pilotlocation] _INPUT ID| FINGER 10}
7 7 S S
5102 5130 5104 5106
15-12 1-8 7-3 2-0
Finger_Tosk_w1| SPREADING FACTOR NTS WALSH POINTER| SAMPLE
, , . NUMBER
7 7 7 7
5108 5110 5112 5114
15 14-12 11-10 5‘/20 9 8 7-0
Finger_Task_w2| EOL_en| Nygisn| TIMING FSBC |COMPRESSED FRAME
. ANJUST| PING/PONG| ~ OFFSET
51(28 51(26 51(18 N)
5124 5116 5122
\ 15-0
Finger_Tosk_w3 [" LONG CODE PLUS FRAME OFFSET |
15 5’(”2 14-0
Finger_Task_wé [UNUSED | " LONG CODE ID]
FIG. 51
5300
15 14 13-9 8-0
Walsh_Sub=Task_w0 WALSH COHERENT| PROCESSING | WALSH CODE
 DISABLE _OPTION SPECIFIER ,
7 4) S
5302 5306 5308 5304
FIG. 63
5400
4 3-1 0
PROCESSING PILOT PILOT BITS| TRANSMIT DIVERSITY
SPECIFIER . REGION | SELECTION ENABLE
7 7 S
5402 5404 5406

FIG. 54

US 6,650,694 B1

U.S. Patent Nov. 18, 2003

Sheet 17 of 21

US 6,650,694 B1

5500
4 3 2 1-0
PROCESSING PILOT PILOT/ PROCESS| UNUSED
SPECIFIER . REGION NON=PILOT CAL
7 7 y
5502 5504 5506
FIG. 55
f:/esoo
5602~ 15-12 11-8 7-6 5 4 3-0
DPE_Tosk_w0 [OPCODE] UNUSED] INPUT ID] At Ant | UNUSED| SEARCH ID|
7 7 S N

5612 5614 5616 5618
5604~ 15-12 11-9 8 7-3 2-0
DPE_Task_w! SPREADING INTERRUPT UNUSED WALSH SAMPLE
_FACTOR ENABLE POINTER | NUMBER

(4 3)

5620 5622 5624 5626
5606~ 15-13 12-8 7-0
DPE_Tosk_w2 | UNUSED]| WINDOW, SIZE | ~ FRAME OFFSET]
4 N
5634 5628
5630

DPE_Tosk_w3 | LONG CODE PLUS FRAME OFFSET]
5610~ 2002 15 5636 15-0

)]

OPE_Task_w4 [1/2 CHIP" ENABLE | LONG CODE D |

FIG. 56

U.S. Patent Nov. 18, 2003 Sheet 18 of 21

US 6,650,694 B1

3/700
5702~ 15-12 11-8 7-6 5-0
PSC_Task_w0 [, OPCODE | UNUSED| INPUT.ID{ UNUSED |
7 S
5710 5712

5704~ 15-12 11-9 8 7-3 2-0
PSC_Tosk_wi| UNUSED| INTERRUPT ENABLE| 1/2 CHIP Nis| SAMPLE
. ENABLE . ~ NUMBER

4 {) N

5714 5716 5718 5720
5706~ 15-12 2722 11-0
PSC_Tosk_w2 | UNUSED | " WINDOW START OFFSET]
5708~_ 15-12 >724 11-0
PSC_Tosk_w3| UNUSED] ' WINDOW SIZE |

FIG. 57
5800
5802~ 15-12 11-8 7-6 5-3 2-0
SSC_Seorch_Tosk_wO| OPCODE] UNUSED} INPUT ID] UNUSED| . SSC ID}
7 N 3

5808 5810 5812
5804~ 15-12 11-9 8-3 2-0
S5C_Search_Task_w! UNUSED | INTERRUPT ENABLE UNUSED SAMPLE
) _ NUMBER

58?4 58\16

5806~ _ 2818 15-0
SSC_Seorch_Task_w2 | 6CC OFFSET]

FIG. 58

U.S. Patent Nov. 18, 2003 Sheet 19 of 21 US 6,650,694 B1

'5/900
5902~ 15-12 11-8 7-6 5-3 2-0
(Cl_Tosk_wO[. OPCODE] UNUSED] INPUTID] UNUSED{ ,SEARCH ID]
N)
3912 32914 3920
9904~ 15-12 1-9 8-3 2-0
LCI_Tosk_w1 UNUSED | INTERRUPT ENABLE UNUSED| SAMPLE
‘ NUMBER
59?6 55;8
5906~ 2922 15-0
LCI_Tosk_w2 | ’ LONG CODE OFFSET |}
5908~ 15-8 7-6 5-0
LCI_Tosk_w3| TX DIVERSITY ENABLES| LONG CODE SET| LONG CODE GROUP NUMBER |
7 S N
5924 5930 5928
5810~ 15 14-8 7-0
LCI_Task_w0 [1/2 CHIP. ENABLE] UNUSED| ‘ CODE ENABLES |
7 S
5932 5926
FIG. 59
:3300
6002~ 15-12 11-8 7-6 5-4 3-0
PICH_Tosk_wO| OPCODE | UNUSED | INPUT 1D] UNUSED] . FINGER 1D]
7 S
6012 6014 6016
6004~ 15-12 11-9 8 7-3 2-0
PICH_ Task_w) UNUSED INTERRUPT | UNUSED WALSH| SAMPLE
ENABLE POINTER| NUMBER
7 S —3
6018 6020 6022
6006~ _ 15-13 12-8 7-0
PICH_Task_w2 | N_Symbois| wiNDOW SIZE | _ FRAME OFFSET]
4 4 N
6024 6026 6028
6008~ 6030 15-0

¥

PICH_Tosk_w3 | LONG CODE PLUS FRAME QFFSET |

6010~ 5032 5 6034 14-0
PICH_Tosk_wé4 [1/2 CHIP ENABLE | " LONG CODE D]

FIG. 60

US 6,650,694 B1

Sheet 20 of 21

Nov. 18, 2003

U.S. Patent

VNNILNY
NdILINA

¥04 Q/V
NOY3 STTdWVS
D ONV |

c9 OIAd
NSVt
7029 sng 434408 ST
434dne WNY3IX3] 08MAS T
854 HIONI3
2N 429
9029
\
SR 1) y314ng 418 udang |[¥H98 uaune || wasine
QUNLSI 1] snotionyisnt || 10BS. Houvas/3d0 || 100td 1("303" || sotwonisn
f
]]
4IN3
XI¥900ZESHL 7079
0029

US 6,650,694 B1

Sheet 21 of 21

Nov. 18, 2003

U.S. Patent

v _
wle

135340

. AYVONNOB T0BHAS
&9 Ild SAIHD .,40}00) Tuds,
<

Ll I

A ¥IONIJ 304 GORIId dIHD T NV HLM 3000 ONO1

AYVONNOB T08NAS

SdlH) 401904 71ds,
__“

" 135410

Al Bd

Wb YIONI4 ¥04 QORAd dIHD T NV HLM 3003 ONO1

t-1
™\Z2059
(3NIL VD01 dDD)

Y
diH

7

3INNOD
J Wwa010

¥343n8 INdNI 10
SIN3INOD INJUEND

[

{
7

\ Y3INNOD
dIHd w8010

US 6,650,694 B1

1

CORRELATOR CO-PROCESSOR FOR CDMA
RAKE RECEIVER OPERATIONS

This application claims priority under 35 USC §119 (e)
(1) of Provisional Application No. 60/183,457, filed Feb. 18,
2000.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to RAKE receivers, and
more particularly to a multiple channel programmable cor-
relator co-processor (CCP) that supports CDMA base-
station and handset RAKE receiver operations.

2. Description of the Prior Art

A RAKE receiver is a radio receiver that includes a
plurality of independent receiver units, most commonly
referred to as RAKE branches, each of which receives and
operates as a diversity combiner of multipath propagated
signals. RAKE receivers are especially used in CDMA
receivers, among others. RAKE receivers generally involve
correlations and accumulations associated with a particular
wireless communication protocol wherein each RAKE
branch is dedicated to processing the multipath propagated
signals in a predetermined manner to accommodate a
desired communication protocol. U.S. Pat. No. 5,978,423,
entitled Method and Arrangement of Signal Tracking and A
Rake-Receiver Utilizing the Arrangement, issued Nov. 2,
1999 to Farjh and U.S. Pat. No. No. 5,917,851, entitled
Method for Allocating Rake Branches and Rake Receiver,
issued Jun. 29, 1999 to Jarvela et al. exemplify prior art
RAKE receiver techniques and architectures in which
RAKE branches are permanently allocated to fixed signal
processing tasks.

In view of the foregoing discussion, a need exists in the
wireless communications art for a programmable, highly
flexible, vector-based correlation machine capable of per-
forming CDMA base-station and handset RAKE receiver
operations such as finger spreading and search, among other
things, for multiple channels, regardless of the particular
wireless communication protocol.

SUMMARY OF THE INVENTION

The present invention is directed to a Correlator
Co-Processor (CCP) particularly suitable for supporting
spread-spectrum CDMA communication systems such as
IMT2000-DS (3.84 MHz chip rate specification), IMT2000-
MC, IMT2000-TDD, and CDMAOne/IS-95 as well as GPS.
The CCP is a programmable, highly flexible, vector-based
correlation machine that performs CDMA base-station and
mobile-station RAKE receiver operations. The CCP is a
centralized correlation machine that can be used for various
RAKE receiver tasks such as finger spreading and search,
among other things, to accommodate most functions com-
mon to RAKE receivers, regardless of the particular wireless
protocol. Each RAKE receiver task uses a common central-
ized data path of the CCP in a time-multiplexed fashion, so
that many different tasks can be simultaneously performed
on the CCP. The main data path is vectorized in order to
reduce power dissipation.

Sharing of the CCP main data path for various RAKE
receiver functions, e.g. finger demodulation, code tracking
loops and search, accommodates a CCP structure that has
programmably configurable resources, rather than hard-
wired resources common to known architectures. The
amount of CCP resources is allocated in any desired way to

10

15

20

25

30

35

40

45

50

55

60

65

2

accommodate a given situation. Unused CCP resources are
disabled to preserve power dissipation.

The CCP is capable of performing complex valued cor-
relations that consist of de-spreading and coherent accumu-
lation. The CCP is also capable of performing non-coherent
accumulations such as accumulating “symbol” energy val-
ues and returning the accumulated energy values for a
specified window of offsets for search operations. The CCP,
for example, can accumulate early, on-time and late samples
of a RAKE finger for use in a finger’s code-tracking loop
(typically a delay-lock loop (DLL)).

One preferred embodiment of the CCP comprises a Data
Path having “multipliers” to multiply samples from an input
buffer with samples of pseudo noise (PN) and Walsh codes,
adder trees to generate partial correlations, a coherent accu-
mulator to sum the current partial correlation with previous
partial correlations(s), and a post processing block for per-
forming RMS (sqrt (I*+Q®)) calculations (sometimes
referred to as “energy” values) and non-coherent accumu-
lations. The CCP Data Path preferably employs extensive
pipeline stages to maximize computational capacity as well
as temporary (“scratch”) memories to store partial correla-
tion and intermediate RMS accumulation results. The pre-
ferred embodiment of the CCP further comprises a plurality
of output buffers such as a Finger Symbol Buffer, DPE
Buffer, LCI Buffer, EOL Buffer, SSC Search Buffer, and/or
PSC Search Buffer for supporting various types of tasks and
storing task results. According to the preferred embodiment,
the CCP further comprises PN and Walsh generators, a
Controller, a Task Buffer, an Interrupt Generator and Con-
figuration Parameter storage units.

The present invention thus provides various technical
advantages. In one aspect of the invention, a programmable,
highly flexible, vector-based correlator co-processor is pro-
vided to support a plurality of CDMA base-station and
mobile-station RAKE receiver operations.

In another aspect of the invention, a centralized correla-
tion machine is provided to accomplish various RAKE
receiver tasks such as finger de-spreading and search.

In yet another aspect of the invention, a correlator
co-processor is provided with a centralized data path capable
of supporting time-multiplexed operations such that many
different tasks can be simultaneously performed by the
correlator co-processor.

In still another aspect of the invention, a correlator
co-processor for supporting a plurality of CDMA base-
station and mobile-station RAKE receiver operations is
provided with a vectorized main data path to reduce power
dissipation.

According to another aspect of the invention, a correlator
co-processor having a shared data path is programmably
configurable to accommodate a plurality of CDMA base-
station and mobile-station RAKE receiver operations with-
out necessitating “hardwired” structural elements.

According to yet another aspect of the invention, a
correlator co-processor for supporting a plurality of CDMA
base-station and mobile-station RAKE receiver operations is
capable of performing complex valued correlations consist-
ing of de-spreading and coherent accumulation and is further
capable of accumulating “symbol” energy values (non-
coherent accumulations).

In still another aspect of the invention, a correlator
co-processor for supporting a plurality of CDMA base-
station and mobile-station RAKE receiver operations is
configurable to support the IMT2000-DS (3.84 MHz chip
rate specification), IMT2000-MC, IMT2000-TDD,
CDMAOne/IS-95 and GPS wireless protocols.

US 6,650,694 B1

3

As used herein, the following terms have the following
meanings.

“3G” means 3™ generation.

“ABB” means analog baseband (cf AFE).

“A/D (ADC)” means analog to digital converter.

“AFC” means automatic frequency control.

“AFE” means analog front end (cf ABB).

“AGC” means automatic gain control.

“ARIB” means Association of Radio Industries and Busi-
nesses (Japan).

“ARM” means advance RISC machine.

“BS” means base station.

“CCP” means correlator co-processor.

“CDMA” means code division multiple access.

“CPICH” means common pilot channel.

“D/A (DAC)” means digital to analog converter.

“DBB” means digital baseband.

“DLL” means delay lock loop.

“DMA” means direct memory access.

“DPCCH” means dedicated physical control channel.

“DPE (DPPE)” means delay profile estimation.

“DPP” means delay path power.

“DSP” means digital signal processor/processing.

“DSPRDC” means DSP Research and Development Center.

“ETSI” means European Telecommunications Standards
Institute.

“FSC” means first short code.

“GPS” means global positioning system.

“HW” means hardware.

“ITU” means International Telecommunications Union.

“L1” means layer 1 (physical layer).

“L2” means layer 2 (link layer).

“L3” means layer 3 (network layer).

“LC” means long code.

“LCI” means long code indicator.

“LFSR” means linear feedback shifter register.

“MS” means mobile station.

“PICH” means paging indication channel.

“PN” means pseudo noise.

“PSC” means primary search code.

“RF” means radio frequency.

“RTT” means radio transmission technology.

“RX” means receive/receiver.

“SC” means short code.

“SIR” means signal to interference ratio.

“SSC” means secondary search code.

“SW” means software.

“TI” means Texas Instruments Incorporated.

“TIA” means Telecommunications Industry Association.

“TRDC” means Tsukuba Research and Development Cen-
ter.

“TX” means transmit/transmitter.

“UMTS” means Universal Mobile Telephone System.

“WBU” means Wireless Business Unit (TT).

“WCS” means Wireless Communications Systems (TI).

“WCDMA” means wideband CDMA.

“Algorithmic Software” means an algorithmic program used
to direct the processing of data by a computer or data
processing device.

“Data Processing Device” refers to a CPU, DSP,
microprocessor, micro-controller, or other like device and
an interface system, wherein the interface system pro-
vides access to the data processing device such that data
can be entered and processed by the data processing
device.

“Discrete Data” means digitized data that can be stored in
the form of singularly isolated, discontinuous data or
digits.

10

15

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects and features of the present invention and
many of the attendant advantages of the present invention
will be readily appreciated as the same become better
understood by reference to the following detailed descrip-
tion when considered in connection with the accompanying
drawings in which like reference numerals designate like
parts throughout the figures thereof and wherein:

FIG. 1 illustrates a simplified top-level block diagram
showing a CCP according to one embodiment of the present
invention;

FIG. 2 shows an IMT2000-DS example of a Downlink
Dedicated Physical Channel (DPCH) having pilot bits at the
end of the slot and TPC bit(s) in the middle of the slot;

FIG. 3 is a simplified block diagram illustrating a CCP
Data Path structure;

FIG. 4 illustrates a sequential CCP task cycle iteration
diagram;
FIG. 5 illustrates external interfaces to a CCP;

FIG. 6 illustrates a task buffer suitable for use with the
CCP shown in FIG. 1;

FIG. 7 illustrates task buffer entries associated with a task
buffer;

FIG. 8 illustrates a plurality of task request bits associated
with a CCP;

FIG. 9 illustrates a task request ID register format;
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

FIG. 19 illustrates an external interrupt enable register
format;

FIG. 20 illustrates a PSC register format;

FIG. 21 illustrates a SSC register format;

FIG. 22 illustrates DPE and LCI energy accumulation

parameters;

FIG. 23 illustrates a search code symbol location register;
FIG. 24 illustrates a start/continue command;

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

ter;

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

10 illustrates a finger interrupt table format;

11 illustrates a finger interrupt control format;

12 illustrates a Task_ Update Cycle_ Register;

13 illustrates a Walsh table;

14 illustrates a Walsh table entry;

15 illustrates a FSB buffer configuration table;

16 illustrates a FSB buffer configuration table entry;
17 illustrates a pilot-TPC position table entry format;
18 illustrates a pilot bit table entry form at;

25 illustrates a software reset command,

26 illustrates a CCP,; Status register format;

27 illustrates task run/stop status bits;

28 illustrates task ping/pong status bits;

29 illustrates a task update time register;

30 illustrates a cycle count register;

31 illustrates a current GCC count value register;
32 illustrates an Int_ Error Event Status register;
33 illustrates an Int_ System_ Event Status regis-

34 illustrates a FIFO empty status;
35 illustrates a FIFO 0 status;

36 illustrates a FIFO 1 status;

37 illustrates a FIFO 2 status;

38 illustrates a FIFO 3 status;

39 illustrates a FIFO content format;

US 6,650,694 B1

5
40 illustrates a finger symbol buffer (FSB) format;
41 illustrates a FSB format, SF=4 only;
42 illustrates a finger max buffer format;
43 illustrates an EOL buffer memory map;

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

FIG.
mode;

FIG. 51 illustrates a finger task format;

FIG. 52 illustrates a Walsh sub-task format for finger
non-EOL Walsh entries;

FIG. 53 illustrates a Walsh sub-task format for EOL, DPE;

FIG. 54 illustrates a processing specifier for multi-symbol
coherent processing;

44 illustrates a DPE buffer memory map;

45 illustrates a L.CI buffer memory map;

46 illustrates a PSC search buffer memory map;
47 illustrates a secondary search code buffer format;
48 illustrates a task update timing diagram;

49 a task start/stop state transition diagram;

50 illustrates finger modifications in compressed

FIG. 55 illustrates a processing specifier for single-
symbol coherent processing;

FIG. 56 illustrates a DPE search task format;
FIG. 57 illustrates a PSC search task format;
FIG. 58 illustrates a SSC search task format;
FIG. 59 illustrates a LCI search task format;
FIG. 60 illustrates a PICH search task format;

FIG. 61 illustrates a circular buffer within a finger symbol
buffer;

FIG. 62 illustrates implementation of a digital base-band
system comprising the CCP shown in FIG. 1, a digital signal
processor (DSP), and a maximal-ratio combining (MRC)
ASIC according to one embodiment of the present inven-
tion; and

FIG. 63 illustrates a global chip counter (GCC) mecha-
nism for maintaining timing in a CDMA rake receiver and
that is suitable for use in association with the CCP shown in
FIG. 1.

While the above-identified drawing figures set forth alter-
native embodiments, other embodiments of the present
invention are also contemplated, as noted in the discussion.
In all cases, this disclosure presents illustrated embodiments
of the present invention by way of representation and not
limitation. Numerous other modifications and embodiments
can be devised by those skilled in the art which fall within
the scope and spirit of the principles of this invention. The
Detailed Description of the Preferred Embodiments
described herein below, although generally applicable to a
mobile station capable of supporting IMT2000-DS commu-
nication standards, for example, utilizes concepts equally
applicable to Base Stations and to other CDMA communi-
cation standards.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

FIG. 1 illustrates a simplified top-level block diagram of
a correlator co-processor (CCP) 100 according to a preferred
embodiment of the present invention. The CCP 100
supports, among others, a 1X clock rate of 3.84 MHz, i.c.,
the baseline IMT2000 chip rate, by utilizing a 16X system
clock (SYS_CLK) and a 8X (30.72 MHz), 4X (15.36
MHz), or 2X (7.68 MHz) receive sample clock. The system
clock and receive sample clock are synchronous, i.e., phase
aligned. A 4X receive sample clock reduces CCP 100 input

10

15

20

25

30

35

40

45

50

55

60

65

6

buffer requirements and AID power at the cost of reduced
signal-to-noise ratio (SNR). A 2X receive sample clock
might be used, for example, in a CCP 100 that implements
only search tasks. The receive sample clock only affects the
input buffer(s) 102 and not the core of the CCP 100.

The CCP 100 can receive multiple in-phase (I) and
quadrature (Q) signal samples from multiple sources to
accommodate antenna diversity. The buffers 102 that store
the I/Q samples are seen to be outside of the core of the CCP
100. In a preferred embodiment, four sources associated
with handset RAKE receiver operations (18 sources for
base-station RAKE receiver operations) may be supported
wherein the I and Q samples are up to 4 to 6-bits or possibly
even more each; and each source generates signals at two,
four, or eight times the chip rate.

The CCP 100, according to one embodiment, is a RHEA
peripheral. When used in association with a host processor
such as a DSP having RHEA Bus interface capabilities, full
functionality of the CCP 100 can be realized by using a
single bus such as the RHEA Bus 104, subject to RHEA
(DSP) Bus 104 bandwidth limitations in order to support
handset RAKE receiver operations. When used in associa-
tion with a host processor such as a TMS320C6x model DSP
manufactured by Texas Instruments Incorporated, full func-
tionality of the CCP 100 can be realized by using a EMIF
bus to accommodate base station use. The finger symbol
buffer (FSB) 106 (which stores finger data) can be seen to be
accessed via a FSB external bus 108 to accommodate
flexibility in retrieving finger data. An external agent can
retrieve this data, for example, to accommodate hardware-
based symbol processing. Usage of the FSB external bus 108
depends on how the CCP 100 is connected in the DBB
system.

The CCP 100 is capable of performing correlations and
accumulations (coherent and non-coherent). The basic
operation is the correlation, commonly referred to as
de-spreading (followed by sum-and-dump), which is used to
remove the effects of long-code scrambling and Walsh
spreading (using WCDMA nomenclature). Importantly, the
CCP 100 controls these correlations and accumulations in
specific ways to achieve all RAKE and searcher operations.

Further, the CCP 100 is a multi-tasking machine. A CCP
finger operation, for example, is called a finger task. Tasks
supported by the CCP 100 include: 1) finger task (Walsh
de-spreading of one or more channels, and early-ontime-late
(EOL) energy measurement)) to support both base station
and handset RAKE receiver operations, 2) delay profile
estimation (DPE) task or “path search” to support both base
station and handset RAKE receiver operations, 3) primary
search code (PSC) search task or “stage 1 search” to support
handset RAKE receiver operations, 4) secondary search
code (SSC) search or “stage 2 search” to support handset
RAKE receiver operations, 5) long code identifier (LCI)
search task or “stage 3 search” to support handset RAKE
receiver operations, 6) paging indication channel (PICH)
de-spreading task to support handset RAKE receiver
operations, and 7) access search to support base station
RAKE receiver operations. The present invention is not so
limited however, and it shall be understood that the CCP
100, appropriately configured, is capable of supporting more
or less tasks than those tasks referenced above. The fore-
going tasks 1-6 are described herein below to further
exemplify the functional capabilities of the CCP 100.

Regarding a CCP finger task, long-code (LC)
de-scrambling and Walsh de-spreading are performed,
resulting in a complex output symbol stream (I and Q). Each

US 6,650,694 B1

7

finger operation can accommodate multiple Walsh code
channels so long as the channels have the same LC offset,
frame offset, slot offset and spreading factor. A maximum
energy for each Walsh channel of each finger is output once
per slot to aid in the combining of symbols. Each finger
operation supports one set of early-ontime-late (EOL)
energy measurements associated with a particular Walsh
code channel. These energy measurements are output once
per frame.

FIG. 2 depicts an IMT2000-DS timeslot 200 for a down-
link dedicated physical channel (DPCH) having pilot bits
202 at the end of the timeslot 200 and TPC bit(s) 204 in the
middle of the timeslot 200. Because the pilot and transmit-
power-control (TPC) bit(s) locations may differ for different
spreading factors as well as between different wireless
protocol standards, the CCP 100 is capable of configuring
the pilot and TPC bit locations to accommodate any wireless
protocol that uses such pilot bits and TPC bits.

Each CCP finger supports one set of EOL energy
measurements, as stated above, to support code-tracking
loop operations, e.g. DLL. In this manner, open-loop
(STTD) transmit diversity is supported by the CCP 100.
Pilot symbols, for example, can be converted into an energy
value wherein the energy values of all pilot symbols in one
frame are accumulated. Pilot symbols can also be accumu-
lated over one or multiple slots and the resulting complex
value converted into one energy value. All such resulting
energy values inside each frame are then accumulated. The
energy associated with multiple antennas is combined to
support STTD. Further, non-pilot energy can be measured
wherein each symbol is converted into an energy value and
the energy values of all symbols in one frame are accumu-
lated.

The delay profile estimation (DPE) task is used by the
CCP 100 to identify potential multi-paths in a window of
offsets. An energy value is returned for every chip or ¥-chip
offset in a specified offset window. Measurements are taken
over a specified number of radio slots and output periodi-
cally. Preferably, the DPE task can measure the requisite
energy in the same way EOL measurements are imple-
mented for the finger task described above.

The primary search code (PSC) search task is used by the
CCP 100 for acquisition of new base stations, also referred
to as “stage 1” search in the WCDMA standards. The “stage
1” search returns the slot-periodic matched-filter output
energy values (for 5120 Y5-chip offsets). Measurements take
place over a specified number of radio slots. The CCP 100
preferably takes advantage of the hierarchical structure in a
256-chip PSC and performs matched-filtering in two steps of
16 operations each. The first step consumes CCP 100 cycles
and the second step runs on post-processing hardware (not
shown). The 256-chip PSC preferably comprises a program-
mable 16x16 PSC sequence.

Second search code (SSC) search, or “stage 2” search, is
used by the CCP 100 to establish frame synchronization of
a new base station and to identify its long-code group. The
SSC search task assumes the SSC Walsh codes to have
16x16 structures and “de-spreads” the data stream with a
spreading factor of 16 within the 256 chip PSC/SSC search
code position. The PSC symbols are preferably de-spread at
the same time. Therefore, 16 complex symbols per slot are
output for the SSC and 16 symbols per slot are output for the
PSC. Remaining Walsh-Hadamard transform operations are
preferably implemented outside of the CCP 100, in a DSP or
dedicated hardware.

Long code identifier (LCI) search, or “stage 3” search, is
used by the CCP 100 to determine the exact scrambling

10

15

20

25

30

35

40

45

50

60

65

8

code, following search stages 1 and 2 described above. This
CCP task measures the de-spread energies using each of the
specified scrambling codes. Further, the L.CI search task can
most preferably measure the common pilot energy in the
same way pilot measurements are implemented in associa-
tion with the DPE task described herein above.

The paging indication channel task is used by the CCP
100 to de-spread the PICH symbols across a window of
offsets. This allows for some uncertainty in the exact timing
of the channel during de-spreading. De-spread symbols are
buffered for each offset in the specified window.

The CCP 100 resources can be partitioned in different
ways to implement the RAKE receiver tasks described
above. For this reason, some parameters discussed herein are
referred to with names rather than numbers (e.g. SYS__
CLK, MAX__CYCLES). There are, for example, a total of
MAX__CYCLES “correlation cycles”, or cycles, supported
by one embodiment of the CCP 100. The CCP 100 has a
processing capacity roughly equivalent to MAX_CYCLES
discrete correlators for RAKE fingers. The CCP 100 has
4*MAX__CYCLES equivalent correlators for implementing
a DPE search task. The number of correlation cycles
expended for each CCP 100 task is then described as
follows. Regarding a finger task, each Walsh channel uses
one correlation cycle, independent of its spreading factor
and each set of EOL measurements uses three correlation
cycles. Further, the maximum symbol energy in a slot for
each Walsh channel is determined. Regarding a DPE task,
window sizes are a multiple of 16 chips; and every 2-chips
of window size uses only one cycle, even though two
equivalent correlations are performed (four equivalent cor-
relations performed for the ontime and ontime+Y:-chip
samples when the Y5-chip option is enabled). The PSC and
SSC search tasks use 16 cycles and 2 cycles respectively,
while the LCI search task uses one cycle per long-code.
Regarding the PICH task, window sizes are a multiple of
16-chips; and each chip of window size uses one cycle,
regardless of whether the %:-chip option is enabled.

The CCP 100 supports MAX_FINGERS simultaneous
finger tasks; wherein NUM__ WALSHS of these finger tasks
support up to 8 Walsh channels, and. NUM_ WALSH4
support up to 4 Walsh channels. Each finger task may
support 1 set of EOL measurements, but a finger task making
EOL measurements will reduce by one the number of Walsh
channels supported on that finger. Hence, finger tasks may
specify up to a maximum of (7xNUM_LARGE__
FINGERS+3x(MAX_FINGERS_NUM_ LARGE__
FINGERS) cycles if necessary (only MAX_CYCLES
cycles can be run at any one time).

The CCP 100 supports one PSC search task, and if
present, must be the first task to run, in order for the
post-processing of the results to have time to be completed.
The CCP 100 further supports up to MAX_DPE DPR
search tasks which can be supported only if the sum of the
sizes of the search windows is less than MAX CYCLES.
The CCP 100 also supports up to MAX__LCI LCI search
tasks as well as a total of MAX TASKS tasks in any
combination that conforms to the above limitations. All
tasks together cannot exceed MAX_CYCLES cycles. The
CCP 100 is further intended to support one PICH task,
although more could be run subject to the limitations of
finger Ids (up to MAX_FINGERS), FSB size, and MAX
CYCLES limitations. Most preferably, a disabled task does
not consume any cycles. An enabled task that is not imple-
mented or waiting to run however, consumes one cycle per
task. CCP 100 resource allocation can be exemplified using
the above limitations as applied to various scenarios
described herein below.

US 6,650,694 B1

9

Scenario 1: 1 DPE task of 256-chip offsets (total cycles
used=128); This scenario could occur during an inter-
frequency base station measurement or upon “wake” in
standby mode. Using full CCP capabilities is justified
because quick measurement or re-acquisition is important.

Scenario 2: 2 DPE tasks of 256-chip offsets each (total
cycles used=256); This scenario could occur during an
inter-frequency base station measurement.

Scenario 3: 1 DPE task of 256-chip offset, 1 PSC search
task, 6 finger tasks of 16 Walsh codes (implemented as 12
fingers of 8 codes each), and 6 finger tasks of EOL mea-
surements (total cycles used=256/2+16+6*16+6*3=258);
This could be a steady-state scenario with one radio link that
consists of 16 Walsh channels. The full usage of CCP 100
resources is needed because of the large number of Walsh
channels.

Scenario 4: 1 DPE task of 256-chip offset, 1 PSC search
task, 6 finger tasks of 4 Walsh codes, 6 finger tasks of 4
Walsh codes, 6 finger tasks of 2 Walsh codes, 6 finger tasks
of 1 Walsh code, and 6 finger tasks of EOL measurements
(total cycles used=256/2+16+6%4+6¥4+6*2+6*1+6*3=
228);

This could be a steady-state scenario with four radio links,
two with 4 codes, one with 2 codes, and one with 1 code.

Scenario 5: 1 DPE task of 128-chip offset and 6 finger
tasks of 1 Walsh code, each with EOL measurements (total
cycles used=128/2+6%1+6*3=88); This could be a steady-
state scenario with one radio link each with one code. The
DPE search window is small because delay spread is small
or because a large search is divided into parts.

Scenario 6: 1 DPE task of 128-chip offset and 2 finger
tasks of 4 Walsh codes each, plus EOL measurements for
each (total cycles used=128/2+2*4+2*3=78); This could be
a 2 Mbps scenario (indoors).

As stated herein before, the CCP 100 performs “chip”-rate
processing and energy accumulation. Most preferably, the
CCP 100 does not perform “symbol”-rate receiver opera-
tions such as channel estimation, maximal-ratio combining,
and de-interleaving, nor feedback loops such as AGC, AFC,
and DLL. The CCP 100 preferably supplies the energy
values to the feedback loop (for DLL), but does not operate
on the loop itself. Such symbol operations can be performed
either in a DSP or in dedicated hardware outside of the CCP
100. In view of the foregoing, it can be seen that the
capabilities and architecture of the CCP 100 are functions of
the number of needed fingers and multipath delay-spread,
among other factors, e.g. datapath width, clock rates, ASIC
technology and the like.

The CCP 100 importantly performs correlations repeat-
edly using data associated with a buffered block of receive
(sub)chip-rate samples. The Data Path 300 is capable of
performing a partial correlation using multiple chips of data
in a single cycle. These capabilities and functions are now
described below in detail in association with each of the
CCP 100 elements illustrated in FIG. 1. With continued
reference to FIG. 1, the Input Buffers 102 store a stream of
receive I/Q sub-chip samples for processing by the CCP 100
Data Path 300. These sub-chip samples may come directly
from an analog front-end (AFE), digital front-end filtering,
or digital interpolation filtering in a manner well known to
those skilled in the wireless communication art. For each
correlation cycle, the CCP 100 selects a set of input samples
corresponding to a particular sub-chip sample. The CCP 100
may receive input data from multiple sources 106, 108, for
example, to support multiple antennae. Each input source
106, 108 may be at a 2X, 4X or 8X chip rate according to
the instant embodiment. Up to four input sources are sup-

10

15

20

25

30

35

40

45

50

55

60

65

10

ported in the embodiment. Further, the Input Buffers 102
may be implemented as custom register files or as memory.
The CCP Data Path 300 includes “multipliers” to multiply
the samples from the Input Buffer 102 with samples of PN
and Walsh codes from PN and Walsh Generators 110, 112,
adder trees to generate partial correlations, as discussed
above, a coherent accumulator to sum the current partial
correlation with previous partial correlation(s), and a post
processing block for performing RMS (sqrt (I”+Q%)) calcu-
lations (sometimes referred to as “energy” values) and
non-coherent accumulations. The CCP Data Path 300 most
preferably further employs extensive pipeline stages to
maximize computational capacity. Temporary (“scratch”)
memories are used to store partial correlation and interme-
diate RMS accumulation results. Task results are stored in
one of the output buffers, e.g. Finger Symbol Buffer 106,
LCI Buffer 115 and/or DPE Buffer 114, EOL Buffer 116,
SSC Search Buffer 140, Finger Max Buffer 4200, and/or
PSC Search Buffer 118, depending on the type of task.

FIG. 3 illustrates a simplified top-level block diagram
depicting the CCP Data Path 300 according to one embodi-
ment of the present invention. Regarding Data Path 300
precision, the CCP 100 accumulates bits and discards bits at
different stages of the Data Path 300. The input data 302
(from the Input Buffers 102) is obtained via a 6-bit A/D
converter (not shown). After passing through Adder Trees
122, there are 17 data bits. At this point, some bits are
discarded. Before writing symbols to the Finger Symbol
Buffer 106, 9 MSB’s are discarded, with saturation, for
SF=4; or 1 MSB is discarded, with saturation, for other SF’s.
Regarding the symbols passed into the remainder of the Data
Path 300 (e.g. EOL Buffer 116, DPE Buffer 114, L.CI Buffer
115), 4 MSB’s and 2 LSB’s are discarded, with saturation.
Following coherent accumulation 304, there are 22 bits. Of
these 22 bits, 18 bits are kept starting from (13+max(5, log
2(Ny)))” LSB, wherein Ny is the number of. symbols of
coherent accumulation. Following non-coherent accumula-
tion 306, there are 32 bits. Of these 32 bits, 24 bits are kept
starting from (13+max(5, log 2(Ny)))"” LSB, wherein Ny
is the number of non-coherent accumulations.

The PSC Search Buffer 118 serves two purposes. First, it
stores running energy values while the PSC search task is
active. In this regard, it is used as accumulator memory by
the CCP 100. Second, when the PSC search task is finished,
it stores the final energy values, which can then be read by
the host processor, i.e. DSP. One energy value per ¥-chip
offset is returned, thereby resulting in a total of 5120 energy
values for a time slot having 2560 chips such as illustrated
in FIG. 2. According to one embodiment, the PSC search
task requires a post-processor (not shown), to acquire the
5120 energy values; where the PSC Search Buffer 118 is
dedicated for intermediate first stage values which would be
read by the aforesaid post-processor. While the PSC search
task is active, the PSC Search Buffer 118 is accessible only
by the CCP Data Path 300. When the PSC search task is
inactive, the PSC Search Buffer 118 is accessible only via
the DSP Bus 104. An arbitrator 308 handles access rights.
Further, an interrupt may be generated upon completion of
a PSC search task.

The DPE Buffer 114 and LCI Buffer 115 store DPE and
LCI search results respectively. They are directly readable
via the DSP Bus 104 at all times. The DPR Buffer 114 and
LCI Buffer 115 are single-buffered, and new results over-
write old ones. When new results are ready, they may be read
on the DSP Bus 104 directly by the host processor or by the
DSP DMA Controller 150 shown in FIG. 1. Task-based
interrupts can be generated when new results are ready.
When a DPE task finishes, for example, an interrupt may be
generated.

US 6,650,694 B1

11

The EOL Buffer 116 stores finger EOL measurement
results. It is directly readable via the DSP Bus 104 at all
times. The EOL Buffer 116 is also single-buffered, and as
with the DPE Buffer 114, new results over-write old ones.
When new results are ready, they may be read on the DSP
Bus 104 directly by the host processor or by the DSP DMA
Controller 150. The finger task can issue various slot-based
interrupt events that can be used to signal the availability of
new EOL data.

The Finger Symbol Buffer 106 stores complex I and Q
“symbols™ that result from finger tasks. All symbols such as
pilot, TPC, data and the like, are stored here after they are
received and processed by the CCP Data Path 300. The
Finger Symbol Buffer 106 is implemented as a multi-slot
circular buffer for each Walsh channel. The Finger Symbol
Buffer 106 serves as intermediate storage for downstream
symbol-rate processing. The size of the Finger Symbol
Buffer 106 is preferably a compromise between area and the
rate at which data must be moved to where downstream
processing takes place. The Finger Symbol Buffer 106 is
also accessible on the FSB External Bus 108 that may be
used when downstream processing and/or storage take place
outside of the host processor (i.e. DSP system).

Regarding the PN Generator 110 and Walsh Code Gen-
erator 112, a CCP 100 task specifies a PN code (“Gold
code™) and a Walsh code to be generated as well as a code
offset. The PN/Walsh Code Generators 110, 112 then gen-
erate a block of the specified PN/Walsh codes starting from
the specified code offset. Gold code generation is centralized
and can be produced for any correlation cycle. No LFSR
state nor “mask” need to be specified, as the code number
and offset from a global chip counter (GCC) is available.
Both “block” and “serial” Gold code generation methods are
preferably employed to minimize power dissipation. The
16x16 WCDMA PSC and SSC structures have program-
mable parameters to be specified for use in association with
PSC and SSC search operations.

With continued reference to FIG. 1, the Controller 150 is
responsible for actually implementing each of the CCP 100
tasks, and generating appropriate control signals for the Data
Path 300. Diverse correlations can importantly be imple-
mented simply by varying the control sequence. Down-
stream control and Data Path 300 pipeline stages are most
preferably gated off to conserve power when no tasks are
running.

Local timing reference for the CCP 100 is maintained via
an external global chip counter (GCC) 162, that counts the
incoming chip samples as they are written into the Input
Buffers 102. This GCC 162, discussed in further detail
herein below, counts modulo the length of the WCDMA
long code (38400). All timing in the CCP 100 is relative to
the GCC 162, including offsets used in RAKE receiver
operations.

The CCP 100 uses a number of configuration tables 160,
discussed in further detail herein below, to specify how it
executes each of its tasks. Some tables are used globally,
while others are associated with certain tasks. One configu-
ration table 160, for example, contains the position and size
of the pilot symbols for each spreading factor. Another
configuration table 160 contains the Walsh codes associated
with a particular finger task. Configurations are provided
directly by the host processor.

Regarding the Interrupt Generator 165, there are three
types of interrupts in the CCP 100. These interrupts, dis-
cussed in more detail herein below, are task-based interrupts,
system interrupts, and error interrupts. Each CCP 100 task
can generate at least one interrupt. When a DPE task

10

15

20

25

30

35

40

45

50

55

60

65

12

finishes, for example, it may generate an interrupt. Each
finger task can generate a number of interrupts, for example,
to indicate the end of a radio slot or the reception of the TPC
symbol. Task-based interrupts are mainly used by the host
processor for data retrieval, but may be for other SW/HW
synchronization purposes. Task-based interrupts place status
information in one of four interrupt FIFO registers. Each
interrupt FIFO register is tied to one of the four interrupt
lines 170 coming from the CCP 100. System interrupts
indicate global CCP 100 events. A task-update interrupt, for
example, signals the host processor that task updates are
completed. An error interrupt is generated whenever an error
condition is detected.

The Task Buffer 180 contains a list of tasks that the CCP
100 executes. The Task Buffer 180 is read directly by the
CCP 100 in order to determine the CCP’s current tasks. The
Task Buffer 180 is a ping/pong buffer with an individual
control for the ping/pong status of each entry in the Task
Buffer 180. Swapping from ping to pong or vice-versa
occurs on a task-update boundary. A task-update interrupt
tells the host processor when the transfer completes, and that
the updated status bits are available for each task. This
mechanism allows a synchronization between the host pro-
cessor and the CCP 100 which prevents incomplete tasks
being read by the CCP 100. The CCP 100 supports up to
MAX_ TASKS tasks in the Task Buffer 180.

FIG. 4 is a diagram illustrating a plurality of CCP 100
iteration cycle boundaries 400 implemented for a modulo 16
GCC set to zero. FIG. 4 is discussed below with reference
to FIGS. 1-3 to set forth in more detail, significant CCP 100
operations including, but not limited to, the concept of
cycles and their management, programming the CCP 100,
management of tasks, output memory, and interrupts. The
CCP 100 is configured to execute host-specified tasks such
that all running tasks process 16 chips of data in a CCP
iteration, that lasts 16 chips as can be seen in FIG. 4. The
same tasks continue the processing (of the next 16 chips of
data) in the next CCP iteration. A task typically runs for
many CCP iterations. There are MAX_ CYCLES CCP
cycles available in each CCP iteration to execute tasks.
These CCP cycles can be used for finger tasks, search tasks,
and the like. Extra cycles remaining will preferably prompt
the CCP 100 to automatically enter a power saving state.
Most tasks associated with a CCP iteration have been found
to consume more than one CCP cycle. Each task including
the number of cycles required by each task is described in
more detail herein below. New tasks are swapped-in and/or
current tasks are modified at particular CCP iteration bound-
aries 400 called task-update boundaries. Immediately fol-
lowing the task-update boundary 400, the CCP 100 swaps
the tasks, as requested, into the Task Buffer 180. The CCP
100 then begins executing tasks from the first address of the
Task Buffer 180. Each task-update boundary 400 is associ-
ated with a task-update interrupt event, further details of
which are set forth herein below. Some tasks, e.g. LCI
search, require considerably more than one iteration pass to
complete, and stop when they are completed. Other tasks,
e.g. Finger, run continuously until they are disabled by the
host processor.

In one embodiment of the CCP 100, it is the responsibility
of the software running on the host processor to manage the
available MAX_CYCLES CCP cycles. If the MAX__
CYCLES cycles are expended and the CCP 100 has not
executed all enabled tasks, an error interrupt event is issued.
A Cycle__Count register is updated every CCP iteration by
the CCP 100 to indicate how many cycles were expended in
the last CCP iteration to assist in cycle management, and for

US 6,650,694 B1

13

debugging purposes. This register will change infrequently
as tasks are added or completed and is preferably read
directly following a task update boundary 400 to ensure
accuracy.

The Task Buffer 180 stores up to MAX_TASKS tasks
that are acted on in numerical order by address. The order of
placement of tasks in the Task Buffer 180 does not affect the
results of a task in any way, with the exception that the PSC
search task (if present), is most preferably the first task to
execute, as stated herein before. As stated above, the CCP
100 processes only those tasks that are “enabled”. Following
execution of all enabled tasks, the CCP Data Path 300 is
preferably shut down for the remaining cycles in the itera-
tion such that reads and writes to Data Path 300 memory will
cease. Although some control logic will remain operational,
the foregoing will result in significant power savings within
the CCP as stated above.

New tasks can most preferably be added at any time by
writing them to the Task Buffer 180 and then requesting an
immediate load for that task. The configuration memories
and registers associated with the Configuration Tables 160
are most preferably initialized before a task that references
them is programmed. A task, for one embodiment, may
actively run in the first CCP iteration that follows the load
of a task into the hardware side of the Task Buffer 180.
Configuration parameters for a task, therefore, must be
programmed before, or on the task update boundary 400
associated with loading the task.

In view of the foregoing, it is understood that having a
task specification in the Task Buffer 180 is not enough for
the task to execute. The task must also be enabled, prefer-
ably by requesting either a synchronous start or an imme-
diate start. An immediate start takes effect at the task update
boundary 400 on which the request is received, wherein a
synchronous start takes effect at the slot number specified for
that task (that is with reference to the task’s own slot timing).
Each task can be enabled at any task update boundary, as
stated above. Most preferably, there is no fixed limit on the
number of tasks in the Task Buffer 180 that may be enabled,
except concerning the total cycles consumed by the ones
enabled. The foregoing features apply equally well to stop-
ping tasks. All tasks can also therefore be requested to stop
immediately or synchronously at any task update boundary
400.

Modification of tasks is implemented in a manner much
like loading tasks. Task parameters can be changed by
writing a task specification into the Task Buffer 180 and then
immediately requesting a load without changing the enable
status. A task can synchronously (to its own slot timing) be
reloaded. Care must be exercised when changing task
parameters, as described in more detail herein below, since
a new parameter may conflict with a previous parameter,
thereby producing erroneous results.

The CCP 100 keeps a status register indicating the run/
stop state of each task. A task is in one of four states:
stopped, waiting to run, running, or waiting to stop. An
“enabled” task is one that is running, waiting to run, or
waiting to stop. Once a task begins executing, it will execute
forever (until stopped by SW) or until a well-defined end-
time. The stopping of a task can be done by software
manually, or can be done by the CCP 100 automatically, as
stated above, in the case of a task with a well-defined
end-time. Further details regarding automatic de-activation
(stopping) times are set forth herein below in association
with descriptions for each task. A “disabled” task is one that
is in the stopped mode.

Configuration parameters are information used by run-
ning tasks. Some parameters are expected to be changed

5

10

15

20

25

30

35

40

45

50

55

60

65

14

while a task is running, but most are not. Provisions are
therefore implemented to allow changes to those parameters
which may need to change while a task is running so that the
changes have predictable results. In one embodiment set
forth herein, the parameters which have such provisions are
the Finger Interrupt Table, the Finger Symbol Buffer Con-
figuration Table, and the Walsh Table, more fully described
herein below. Entries in the Finger Interrupt Table are
transferred from the software side of a double buffer, to the
hardware shadow of the double buffer at each task update
boundary 400. Entries in the Walsh Table and Finger Symbol
Buffer (FSB) Configuration Table, may be written to at any
time. Pointers to the tables are used by the tasks, and it is
these pointers which can be changed while the task runs with
predictable behavior. Software must be implemented to
avoid writing to any entry that is currently in use by the CCP
100 that can produce undefined results.

Following a power-on reset, all the CCP 100 registers are
in a known state. The CCP memories have contents which
are undefined, and the CCP 100 itself is not running any
tasks. The CCP 100 can be configured in numerous ways to
run its first tasks after the CCP clock has been started.
According to one embodiment, the CCP 100 can be initial-
ized in the following manner:

1. Configuration memories and registers are programmed
(e.g. Walsh Table, Finger Symbol Buffer Configuration
Table, Finger Interrupt Table, Task Update Cycle
register, Pilot Bits Table, Interrupts, and the like);

2. Tasks are written to the Task Buffer 180;

3. Task Requests (start, load) are written to their respec-
tive registers; and

4. Start the CCP 100 via the start/continue command.
All specified task requests (start/load) will occur and the
tasks will begin running at the first task update boundary
400. Importantly, the contents of all memories are undefined
and must be initialized before being referenced. The entire
Task Buffer 180 need not be initialized before its use.
Locations which are to be used however, require initializa-
tion prior to use. All tasks are disabled at reset. Task update
interrupts commence when the CCP 100 is enabled to run
via a start command or by a sleep timer. The present
invention is not so limited however, and it shall be under-
stood that many other initialization procedures, techniques
and sequences can also function to adequately initialize the
CCP 100 under appropriate circumstances. The foregoing
techniques are set forth only to exemplify operating char-
acteristics of the CCP 100 depicted in the Figures referenced
herein.

The Finger Symbol Buffer 106 according to one embodi-
ment described in detail below with reference to FIG. 15, is
managed by setting up multi-slot circular buffer areas for
each de-spreader (sub-task) that uses them. The software
running on the host processor has responsibility to manage
these areas and to ensure the areas do not overlap.
Importantly, the SW must react to interrupts in a timely way
so as to always read in “safe areas.” While the CCP 100 is
writing to a particular address in this memory, for example,
the reading of that address would result in an undefined data
word being read.

Many events in the CCP 100 may cause interrupts on one
of the external interrupt lines 170, as stated above. There are
system interrupt events, error interrupt events, and task-
based interrupt events. Each interrupt event can occur inde-
pendently. As also stated above, a FIFO queuing system is
implemented for the task-based interrupts, so that several
pending interrupts can be held until the host processor
services them as described more fully herein below.

US 6,650,694 B1

15

FIG. 5 illustrates external interfaces to a CCP. 100.
External interfaces can be seen to include a DSP Bus 104
interface, a Finger Symbol Buffer (FSB) 106 external bus
500, I/Q data inputs 502, and other control connections. A
description of interface signals associated with the CCP 100
external interfaces is set forth in Table 1 below.

TABLE 1

(Interface Signal Description)

DSP RHEA BUS

XAD(9:0) IN Address bus

XCS(4:0) IN Chip Select

XD0(31:0) IN Data from RHEA bridge to
peripherals

XDI(31:0) OUT Data from peripherals RHEA
bridge

XRnW IN Read not Write

NXSTROBE(1:0) IN Strobe lines

NXREADY OUT Peripheral Ready to accept or to
send data

NXSUSPEND IN Indicates that DSP has suspended
execution
For an emulation breakpoint.

XPERHMAS OUT Accessed Peripheral register size
0 => 8 bits, 1 => 16 bits

XMAS IN Memory access length
0 => 8 bits, 1 => 16 bits

XIDLE IN Idle peripheral

nXIRQ(11:0) OUT LEAD Interrupt requests

FSB External Bus

FSB_AD(13:0) IN FSB Address inputs

FSB__DATA(31:0) OUT FSB Data word

FSB_RD_REQ_N IN FSB Read request, active low

FSB_READY_N OUT FSB Data ready, active low

Control Signals

RESET_N IN Reset signal

Interface to System Controller

GC([18:0] IN Global Chip Count, System Time
Base

CCP_enable IN CCP enable

Bdry__16_ chip IN 16 chip boundary

CCP__clk IN clock

Interface to DSP

CCP_Int_n[3:0] OUT Interrupts, active low

System__Int_n OUT System interrupt, active low

Error_Int_n OUT Error interrupt, active low

Interface to IQ Select

Ot__sample[1:0] OUT On-time sample number

Lt_sample[1:0] OUT Late-time sample number

Ot__frame[3:0] OUT On-time frame location, 1 of 16
chips

Lt_ frame[3:0] OUT On-time frame location, 1 of 16
chips

Ot__data[15:0] IN On-time data, 16 samples, 12 bits
each

Lt_data[15:0] IN Late-time data, 16 samples, 12 bits
each

FIGS. 647 illustrate software interface details relating to
the Task Buffer 180, synchronously and asynchronously
updated configuration parameters, a command set, global
and interrupt status, FSB status and output data, suitable for
use in association with the CCP 100. It shall be understood
that all data values are oriented with the LSB at bit 0, and
the MSB at the highest bit number. It shall also be under-
stood that when a 32 bit field is read over a 16 bit bus, the
address for bits 15-0 is even and precedes the address for
bits 31-16. Further, all bit fields depicted as “unused” or
“value immaterial” is most preferably filled with zeros to
provide compatibility with other embodiments of the CCP
100.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 6 illustrates a Task Buffer 180 while FIG. 7 illus-
trates Task Buffer 180 entries suitable for use in association
with the CCP 100. The Task Buffer 180 is a collection of
MAX__TASKS ping/pong buffers, each of which may con-
tain a CCP task of 90 bits (5*16). The status of each of
MAX_TASKS tasks as to whether the ping or pong is
available to the CCP 100 for execution, and the other
available for SW loading/modification, can be controlled on
an individual task basis by SW. Task formats according to
one preferred embodiment are described further herein
below. Entries modifiable by the SW may be read by the host
processor (DSP). As stated above, configuration parameters
are updated at the task update boundary 400, at which time
the software-modified register is copied to a hardware-
readable shadow register.

FIG. 8 illustrates entry of task request bits while FIG. 9
illustrates a task request ID register format 900 suitable for
implementing in association with the CCP 100. The type of
request is indicated by writing the appropriate information to
the task request ID field. Each task has a task request ID
register that identifies the type of request being made when
a “1” is written to the corresponding task request bit. With
reference now to FIG. 9, and regarding the Start/Stop Enable
902, a “1” indicates that the request includes the start/stop
action identified in the Start/Stop ID bits 904, a “0” indicates
no start/stop action is requested. The Start/Stop ID bits 904
are referenced by the hardware only if the Start/Stop Enable
bit 902 is set (“17). A“00” indicates an immediate start, “01”
a synchronous start, “10” an immediate stop, and “11” a
synchronous stop. Setting the Load/Reload Enable bit 906 to
“1” indicates that the request includes a load/reload action as
identified in the Load/Reload ID bit 908. A “0” indicates no
load/reload action is requested. Setting the Load/Reload ID
bit 908 to “0” indicates an immediate load is requested,
while a “1” indicates a synchronous reload is requested. This
bit is referenced by the hardware only if the Load/Reload
Enable bit 906 is set (“17). Asynchronous reload implies the
instruction is “enabled”, and if it is not enabled, the reload
will remain pending until an immediate load is requested.
The Timing Adjust Enable bit(s) 910 apply only to finger
tasks. Setting this bit to “1” is a request to adjust timing,
whereas setting this bit to “0” is not a request to adjust
timing. Timing change information is contained within the
specified finger task description. The Slot # field 912 iden-
tifies the slot number for a synchronous action (synchronous
start, synchronous stop, or synchronous reload) relative to
the task’s own frame timing. This field 912 defines the first
slot to begin processing when a synchronous start is
requested. When a synchronous stop is requested, this field
912 defines the first slot which is not processed (the last slot
number processed is the one which precedes this slot
number, modulo 15). When a synchronous reload is
requested, this field 912 defines the first slot after the reload
(the last slot number processed before the reload is the one
which precedes this slot number, modulo 15). The fifteen
slots per frame are numbered 0 through 14. The value in slot
15 in this field 912 indicates the beginning of the next slot.
Any request for a given task that references this value can
only commence following completion of the given task if
the given task is currently being processed. Otherwise the
request and the current task will both be referencing the last
value written.

FIG. 10 illustrates a finger interrupt table format 1000
while FIG. 1 illustrates a finger interrupt control format 1100
that is common to each 3-bit field within the finger interrupt
table 1002. The finger interrupt table 1002 associates a
finger ID with a set of interrupt events. Each finger ID has

US 6,650,694 B1

17

a location in the table 1002 that can enable a slot interrupt,
and/or TPC interrupt, and/or pilot interrupt. The size of the
table 1002 is MAX__ FINGERSx10 bits. The finger interrupt
table 1002 is double buffered, and the contents of the table
1002, which SW writes to, are copied to the CCP 100
hardware view at the task update boundary 400. The table
1002, as viewed by the CCP 100 hardware, is readable by the
host processor (DSP). Each of the 3-bit fields in a finger
interrupt table 1002 entry (Slot, TPC, and Pilot Interrupt
Control) depicted in FIG. 10 have a common format, as
shown in FIG. 11, where the field for controlling the Pilot
Interrupt 1004 is shown. The MSB 1006 controls enable
status, and the 2 LSB’s 1008 specify the interrupt FIFO. The
Half-Slot Enable bit 1010 modifies the Slot Interrupt Control
1012 (if enabled) for half-slot (if “1”) or whole-slot (if “07).

FIG. 12 illustrates a Task Update Cycle register 1200
that identifies how often there is a Task-Update event and
that is suitable for use in association with the CCP 100.
Register 1200 is implemented using a shadow register that
is updated on the task update boundary 400. At reset, the
value of Update_ Cycle is 3 decimal. The value in this
register 1200 is one less than the number of 16 chip periods
in a Task Update cycle (e.g. 3—=Task Update interval is
4*16 chips).

In contrast with the foregoing synchronously updated
configuration parameters, asynchronously updated configu-
ration parameters are typically ones that are not changed
often, if at all, once the CCP 100 begins its operations.
Changing these parameters when not in use is not a problem
(e.g. changing Walsh Table entry when no tasks are refer-
encing the particular entry being changed).

FIG. 13 illustrates a Walsh Table 1300 while FIG. 14
illustrates a Walsh Table entry for a sample Walsh sub-task
suitable for use in association with the CCP 100. The Walsh
Table 1300 holds Walsh sub-tasks 1310, 1312, 1314, 1316.
A set of Walsh sub-tasks is used by a finger or DPE task to
specify how Walsh de-spreading should take place on one or
more (in case of finger) Walsh channels. Each finger or DPE
task has a Walsh Pointer field 1302, 1304, 1306, 1308 to
specify the desired set of Walsh sub-tasks 1310-1316.
Finger tasks, in addition, may specify the processing of an
EOL sub-task which will support a DLL function by com-
puting ontime, early and late energies on a particular Walsh
channel. The Walsh Table 1300 is made up of TOTAL__
WALSH different sections or sets, and each is configured
with a fixed number of Walsh sub-tasks 1310-1316. The first
NUM__ WALSHS sets of Walsh sub-tasks 1310-1312,
addressed by the first Walsh pointers 0 through (NUM__
WALSHS8-1), may each specify up to 8 Walsh sub-tasks, and
the last NUM__ WALSH4 sets, addressed by Walsh pointers
NUM__WALSHS to (NUM_ WALSH8+NUM_ WALSH4-
1), may each specify up to 4 Walsh sub-tasks 1314-1316.
The TOTAL__WALSH sets of Walsh sub-tasks 1310-1316
may specify a maximum of (NUM_ WALSHS8*8+NUM__
WALSH4*4) Walsh sub-tasks 1310-1316. The CCP 100
supports up to MAX_FINGERS finger tasks using MAX
FINGERS unique finger ID’s. Each finger task requires a set
of Walsh sub-tasks 1310-1316 with 1 to 8 valid entries.
Finger tasks having the first (sequentially) NUM__
LARGE__FINGERS finger ID’s are constrained to point to
a set of sub-tasks of size &8, and remaining finger ID’s
constrained to point to one of a set of sub-tasks of size 4.
More than one finger task can point to the same Walsh
sub-task set. A DPE task requires a single Walsh sub-task
which can be located in any set of Walsh sub-tasks
1310-1316 as the first sub-task in that set; any Walsh
pointers may be used. FIG. 13 exemplifies 64 sets of Walsh

10

15

20

25

30

35

40

45

50

55

60

65

18
sub-tasks, with NUM__ WALSH8=32 and NUM__
WALSH4=32. If fewer than the maximum number of entries
(8 or 4) are needed, the sub-tasks 1310-1316 must appear at
the beginning of the area and be consecutive, as illustrated
in FIG. 14 that exemplifies a Walsh sub-task that belongs to
the fifth Walsh set (S5) and is the third Walsh sub-task (ST3).

FIG. 15 illustrates a FSB Buffer Configuration Table 1500
while FIG. 16 illustrates a table entry for the FSB Buffer
Configuration Table 1500 and suitable for use in association
with the CCP 100. The FSB Buffer Configuration Table
1500 is a ping/pong buffer with two entries for each finger
ID/Walsh ID (de-spreader) combination, to specify where in
the Finger Symbol Buffer 106 a finger and each of its Walsh
channels (as specified by the Walsh ID) will output its
de-spread symbols. The first NUM__LARGE_FINGERS
fingers may specify up to eight Walsh ID’s, and each of the
remaining fingers may specify up to four Walsh ID’s. Hence,
there are 8* NUM_LARGE_FINGERS+4*(MAX__
FINGERS-NUM_ LARGE_ FINGERS) entries. FIG. 15
exemplifies MAX_ FINGERS=64 and NUM_ LARGE__
FINGERS=32. Each entry includes a start address for the
first slot of data in a four-slot circular buffer and an address
offset from one slot to the next slot. Start addresses and
offset addresses are most preferably on even 32 bit word
boundaries as discussed further herein below. The FSB
Buffer Configuration Table 1500 is written to directly, with
the ping and pong sides written independently. Each entry is
32 bits wide and is readable as exemplified in FIG. 16.

FIG. 17 illustrates a data entry format for a Pilot-TPC
Position Table while FIG. 18 illustrates a data entry format
for a Pilot Bits Table suitable for use in association with the
CCP 100. The Pilot-TPC Position Table specifies the posi-
tion of pilot and TPC symbols. There are eight (8) entries,
each corresponding to a spreading factor from 4 to 512. Each
entry can be seen to specify two separate locations for pilot
symbols and one location for the TPC symbol. The TPC
position field 1700 specifies the symbol number in a radio
time slot. Each pilot position field specifies a contiguous
region of symbols within the radio time slot. The region is
specified using a starting position 1702, 1704 and an ending
position 1706, 1708, as shown in FIG. 17. In one
embodiment, the pilot regions defined are not only used to
specify the location of pilot symbols as their usage depends
on the task and sub-task that use them. Two defined pilot
regions are therefore required for each spreading factor. The
finger task selects one of these pilot regions to specify when
the Finger Pilot Interrupt is activated, which is seen to be at
the end of the last symbol in this region. The end of the
region is important to achieve this particular task. An EOL
Walsh sub-task or a DPE Walsh sub-task can select one of
the pilot regions in the Pilot-TPC Position Table to define
which symbol energies to accumulate. The defined region
does not have to correspond exactly to the forward-link pilot
symbol region, for example, when it is desirable to measure
the energies of additional non-pilot symbols. Alternatively,
these sub-tasks may measure the energies of symbols out-
side of the selected pilot symbol region.

The Pilot Bits Table depicted in FIG. 18 can be seen to
have an entry for the modulation of the pilot bits (up to 16
bits per slot are supported). for each radio slot (up to 16
slots) for four different options. The common pilot bits in
one embodiment (on the Common Pilot Channel CPICH in
IMT2000-DS) need not be entered in the Pilot Bits Table, as
they are available as option 0, and their values are hard-
wired. The pilot bits for the diversity antenna are stored
along with the pilot bits for the first antenna. The size of the
Table is (3x16) entries by 32 bits. The Pilot Bits Table is

US 6,650,694 B1

19

used by finger EOL and DPE tasks. Each pilot bits entry
encodes one slot and contains 16 bits for each antenna. In
WCDMA, each pair of bits is a complex pilot symbol. The
first pair of bits in the slot resides in bits 15 and 14, with bit
15 being the in-phase bit and bit 14 being the quadrature-
phase bit. The next pair of bits is in bits 13 and 12, and so
on. The number of pilot bits in an actual radio slot may be
less than 16, in which case the first n bits are used, where n
is the total number of bits required. Each task which requires
the use of the Pilot Bits Table will specify the pilot bits
option number, along with a pilot region, which together
indicate the number of pilots and their values.

An external interrupt control register controls the enabling
of FIFO, error and system interrupts to the external interrupt
lines 170. FIG. 19 illustrates one format suitable for use in
association with external interrupt enable registers.

FIG. 20 illustrates a PSC register format for a PSC
register suitable for use with the CCP 100 in which a first
search code has a hierarchical structure defined by the
Kronecker product of two 16-bit sequences, PSC=PSC0 X
PSC1, where “X” denotes the Kronecker product.

FIG. 21 illustrates one SSC register format for a SSC
register suitable for use with the CCP 100 in which the
secondary search code has a hierarchical structure by the
Kronecker product of two 16-bit sequences, SSC=SSC0 X
SSC1 followed by the modulo-2 addition with a Hadamard
sequence, where “X” denotes the Kronecker product. The
SSC search task uses SSCO, post-processing with SSC1; and
the Hadamard sequence is left as a task for software or
special purpose hardware.

FIG. 22 illustrates DPE and LCI energy accumulation
parameters suitable for use in association with the CCP 100
in which DPE and LCI tasks output results once, after
measuring Np,.*Nz¢ radio slots of data. When pilot sym-
bols are accumulated coherently for longer than a symbol,
NTS controls the number of radio time slots of coherent
accumulation. N, can have any value between 0 and 31
(unlike the restrictions for the EOL sub-task), where 0 means
0.4 slots, the others being complete slots. When pilot sym-
bols are accumulated with a coherent length of one symbol,
N is ignored, and results are output after N, time slots.
One embodiment of the CCP 100 Data Path 300 is designed
for the accumulation of up to 8 frames. Exceeding this range
with any combination of these parameters for this Data Path
300 is expected to result in errors due to overflow. Tables are
preferably configured for DPE and LCI parameter sizes of
MAX_DPEx14 bits and MAX_L.CIx14 bits respectively,
wherein the parameters for each DPE and L.CI search ID are
stored in a separate entry as shown in FIG. 22.

FIG. 23 illustrates a search code symbol location register
suitable for use with the CCP 100 and specifies which
symbol of a Perch channel contains the primary and sec-
ondary search codes (PSC and SSC). Values range between
0 and 9 for one preferred embodiment.

FIG. 24 illustrates a start/continue command register 2400
suitable for use in association with the CCP Controller 150,
wherein the start/halt command is used to start the CCP 100
following power-on as discussed above. The CCP 100 will
always start and stop on a 16-chip boundary 400 of the GCC,
and the step value 2402 defines the number of cycles to run
before stopping, wherein a value of “0” indicates continuous
run mode.

FIG. 25 illustrates a software reset command register
suitable for use with the CCP 100. When the CCP 100 is
stopped or halted, a software reset command will reset all
internal registers and states to the power-on reset configu-
ration discussed herein before. This command is preferably
not intended to be used while the CCP 100 is executing.

10

15

20

25

30

35

40

45

50

55

60

65

20

FIGS. 26-39 illustrate various global and interrupt status
registers in which a synchronizer circuit most preferably
allows the host processor (DSP) to read accurate values from
these registers. Synchronizer circuits are well known to
those skilled in the data processor art and so therefore will
not be discussed in further detail herein to preserve clarity
and brevity.

Looking now at FIG. 26, one preferred embodiment of a
CCP status register format is illustrated. The CCP status
register preferably contains a PSC Buffer status bit wherein
a “1” indicates the PSC Buffer 118 is accessible only by the
CCP 100 and a “0” indicates the PSC Buffer 118 is acces-
sible by the host processor (DSP). The CCP status register
also preferably contains a CCP run/stop status bit wherein a
“1” indicates the CCP 100 is running and a “0” indicates the
CCP 100 is stopped.

FIG. 27 illustrates run/stop status registers suitable for use
in association with the Task Buffer 180 in which the host
processor can read the current run/stop status for all tasks
within the Task Buffer 180. Each task can be seen to have a
two bit field which encodes the run/stop status and wherein
“00” indicates “stopped”; “01” indicates “waiting to run”;
“10” indicates “running”; and “11”indicates “waiting to
stop.”

FIG. 28 illustrates ping/pong status registers suitable for
use in association with the Task Buffer 180 in which each
task can be seen to have a two bit field that encodes the
ping/pong status and wherein “00”indicates “HW is reading
ping”; “01” indicates “HW is reading ping, waiting to
pong”; “10” indicates “HW is reading pong”; and “11”
indicates “HW is reading pong, waiting to ping.”

FIG. 29 illustrates a task update time register 2900
suitable for use in association with the CCP 100 in which the
Task_Update_ Timestamp register 2902 captures the GCC
value of the most recent task update boundary 400.

FIG. 30 illustrates a cycle count register suitable for use
in association with the CCP 100 in which the cycle count
register captures the number of cycles expended in the most
recent CCP iteration such as depicted in FIG. 4. The cycle
count register is most preferably updated every CCP itera-
tion.

FIG. 31 illustrates a GCC count register suitable for use
in association with the CCP Controller 150. The GCC count
register captures the current GCC value, most preferably
updated once per chip. Most preferably, the 4 MSB’s indi-
cate the GCC local slot number and the remaining LSB’s
indicate the remainder of the count in chips.

FIG. 32 illustrates one embodiment of an interrupt error
event status register suitable for use in association with the
CCP 100. Preferably, a cycles exceeded error bit is set at “1”
if the number of cycles attempted in an iteration is greater
than the maximum (e.g. 320), or “0” otherwise. Interrupt
FIFO overflow error bits are preferably implemented such
that one bit for each of the four interrupt FIFO’s discussed
herein before is set at “1” if the corresponding FIFO has
overflowed, or “0” otherwise.

FIG. 33 illustrates one embodiment of an interrupt system
event status register 3300 suitable for use in association with
the CCP 100. Reading the interrupt system event status
register 3300 most preferably clears the system interrupt
event wherein a Task Update Event bit 3302 is set at “1” if
the Task Update event has occurred, or “0” otherwise.

FIG. 34 illustrates one embodiment of a FIFO status
register showing the empty/non-empty status for each inter-
rupt FIFO, and that is suitable for use with the CCP 100.
When a particular FIFO is not empty, its FIFO empty status
bit is preferably set at “1.” The status bit is most preferably

US 6,650,694 B1

21

cleared when all FIFO contents have been read. FIGS.
35-38 illustrate FIFO status registers in which each FIFO
status register contains the number of active entries currently
in the FIFO (which have not been read).

FIG. 39 illustrates a content format associated with one
embodiment of a FIFO 3900 and suitable for use with the
CCP 100. FIFO contents can be seen to have two words each
3902, 3904, and are preferably read out at one memory
location, one after the other. When the second word (FIFO__
wl) 3904 is read, the FIFO 3900 hardware increments its
internal read pointer (which points to a 32-bit entry). All
zeros are returned when there are no active entries to be read.
A finger task can issue multiple and simultaneous interrupt
events for the half slot, full slot, TPC, and pilot, which are
indicated by individual status bits in the first word 3902. The
buffer slot number field 3906 indicates which slot in the
multi-slot circular buffer that a finger task or SSC search task
has placed its data (most preferably, the buffer slot number
field is valid when the slot interrupt bit field is set for a finger
task and for all SSC search task interrupts). The second word
3094 of the FIFO can be seen to record the GCC value when
a specific event has occurred.

FIG. 40 illustrates one embodiment of a Finger Symbol
Buffer register format 4000 when a finger task has a spread-
ing factor between 8 and 512 while FIG. 41 illustrates a FSB
register format 4100 associated with a finger task having a
spreading factor of 4. The FSB 4000 holds 18 k 32-bit words
and is divided into multi-slot circular buffers for each finger
ID/Walsh ID combination. The location of each circular
buffer is defined in a FSB Configuration Table, discussed
herein below. The FSB 4000, 4100 is most preferably
accessed by software through a hardware symbol processor
(HSP) or maximal-ratio combining (MRC) module, via a
page register using techniques familiar to those skilled in the
data processing art.

FIG. 42 illustrates a register format for a finger max buffer
4200 according to one embodiment that is suitable for use
with the CCP 100. The finger max buffer 4200 is a four slot
circular buffer that stores the largest energy value within a
slot for a particular finger ID/Walsh ID (de-spreader) com-
bination. Each energy value is 16-bits. There are most
preferably 8*NUM_LARGE_FINGERS+4*(MAX
FINGERS-NUM__LARGE_ FINGERS) four slot circular
buffers. These four slot circular buffers are arranged in the
same order as the FSB Configuration Buffer 106, and the
four slot energies are grouped together. The buffer number
(0-3) used for a particular slot is the same as the buffer
number used by the FSB 106 to store symbols, and the finger
task interrupt information provides this buffer number in the
FIFO entry.

FIG. 43 illustrates one embodiment of a EOL Buffer
memory map 4300 suitable for use in association with the
EOL Buffer 116. The EOL Buffer 116 stores early, ontime,
and late energy measurement data associated with finger
tasks as stated above. Results are dumped into the EOL
Buffer 116 once per frame—at the end of each frame—and
most preferably are retrieved by the host processor (e.g.,
DSP) before the next frame boundary. When new results are
ready, they may be read on the DSP Bus 104 directly by the
host processor or by a DSP DMA controller associated with
the host processor. Outputs, as seen in FIG. 43, are indexed
by the finger ID.

FIG. 44 illustrates one embodiment of a DPE Buffer
memory map suitable for use in association with the DPE
Buffer 114. Output results from the DPE task are placed in
the DPE Buffer 114, which holds up to MAX_DPE*32*2
energy values. The DPE Buffer 114 is partitioned into

10

15

20

25

30

35

40

45

50

60

65

22

equal-sized blocks, each with 32 locations, wherein a loca-
tion holds an ontime energy and (optionally) a late-time
energy for an offset within a specific search window. A DPE
task with a certain DPE search ID outputs its results starting
at the same block number in the DPE Buffer 114. If the
search window is less than or equal to 32 chips, for a DPE
task,. then all of its results are placed in one block of the
DPE/LCI Buffer 114, 115. If the search window is more than
32, the results are placed in the next adjacent blocks of the
DPE/LCE Buffer 114, 115. Results are stored sequentially
from the starting to the ending offset.

FIG. 45 illustrates a LCI Buffer memory map suitable for
use in association with the LCI Buffer 115. Output results
from the LCI tasks are placed in the LCI Buffer 115, which
holds MAX__LCI pairs of energy values. The LCI Buffer
115 is partitioned into equal-sized blocks, each block with 8
locations, wherein a location holds an ontime energy and
(optionally) a late-time energy for a long code. An LCI task
with a certain LCI search ID outputs its results starting at the
same block number in the LCI Buffer 115. The LCI task
outputs a pair of energies for each of up to 8 codes being
identified.

FIG. 46 illustrates a PSC search buffer memory map
suitable for use in association with the PSC Search Buffer
118, wherein the PSC Search Buffer 118 contains 5120
words, one for every %-chip in a WCDMA radio time slot.
The first location can be seen to contain the energy value at
zero offset (modulo 2560 chips) from GCC, the next at
Y-chip, and so on. The PSC Search Buffer 118 is most
preferably accessible to the host processor only when the
PSC search task is not active. Accessibility is indicated by
the PSC Buffer status bit in the CCP status register discussed
herein above with reference to FIG. 26.

FIG. 47 illustrates a secondary search code buffer format
suitable for use in association with the SSC Search Buffer
140 discussed herein before with reference also to FIG. 21.
The SSC Search Buffer 140 can be seen to contain 1024
32-bit words arranged as eight 4-slot circular buffers, one for
each SSC ID. There are 16 symbols per slot of each the PSC
and SSC, wherein complex symbols for both the PSC and
SSC are stored in the buffer. The first half of the SSC Search
Buffer 140, comprising 512 32-bit words, contain the SSC
symbols and the second half the PSC symbols.

The availability of task sets, how tasks are transferred into
the CCP 100, when tasks begin executing and when tasks are
complete are now set forth below with reference to FIGS.
48-60 to more completely describe 1) finger tasks, including
support for EOL measurement, 2) DPE (“multipath search”),
3) PSC search (“stage 1 search”), 4) SSC search (“stage 2
search”), 5) LCI search (“stage 3 search”), and 6) Paging
Indication Channel (PICH) De-spreading.

FIG. 48 is a diagram illustrating task update timing
according to one embodiment of the present invention and
that is suitable for use in association with the CCP 100. As
stated above, the CCP 100 includes a ping/pong Task Buffer
180 that can contain up to MAX_TASKS tasks. Tasks are
written to the Task Buffer 180 by software, and after the
tasks are loaded into the hardware side (firmware), they can
be executed by the CCP 100. The loading is requested by
software using the Task Request bits along with a Task
Request ID, and occurs at the next task update boundary 400
following the write of the request. The foregoing is the basic
mechanism for loading tasks into the CCP 100 for execution.
When the Task Update transfer takes place, the Task
Update_ Timestamp register 2902 is loaded with the current
value of the global chip counter (GCC) as also described
herein above. The time interval for the Task_ Update (task

US 6,650,694 B1

23

update) boundary 400 is most preferably programmable and
for one embodiment described herein, is required to be set
at a multiple of the CCP iteration (16 chip periods) such as
illustrated in FIG. 48. This multiple of 16 chips is stored in
the double-buffered shadow register Task Update_ Cycle,
which is updated by copying the software side of the register
to the hardware side on every Task Update (task update)
boundary 400. At reset, the value of Task-Update_ Cycle is
4, but could have other values as well. The contents of the
Task Buffer 180 may be read by the host processor as stated
above. After the Task_ Update interrupt 4802 occurs, which
signals the completion of the Task Update actions, reading
the Task Buffer 180 will not result in a synchronization
problem. Following a power-on reset, the contents of the
Task Buffer 180 are undefined, as stated herein before, the
enable status bits of all tasks in the execution buffer are
disabled, and all Task Request bits are cleared. Tasks will
begin being executed once the tasks are written to the Task
Buffer 180, Task Requests to load and start are made, and the
CCP 100 is started.

FIG. 49 illustrates a task start/stop state transition diagram
according to one embodiment that is suitable for use in
association with the CCP 100. Most tasks preferably have an
ID associated with them and that is used by the CCP 100 to
identify which configuration parameters are associated with
the tasks and where the results of the tasks are to be placed.
Importantly, the same ID should not be duplicated on two
tasks of the same type which may run simultaneously since
the results of such a situation are not necessarily defined for
each embodiment of the CCP 100. One embodiment of the
CCP 100 implements four types of task-level ID’s, including
finger ID, DPE search ID, L.CI search ID and SSC ID. The
finger ID is used by finger tasks and by the PICH
de-spreader task described above. The finger ID of a task is
used to index coherent scratch memory 310, internal scratch
memory 312, the FSB Configuration Table 1500, FSB status,
the Finger Interrupt Table, and the EOL Buffer 116. The
finger ID is also used to distinguish different finger task
events at the interrupt FIFO’s. The DPE search ID is used by
DPE tasks, wherein any running DPE tasks are required to
use unique DPE search ID’s. The search ID of a DPE task
is used to index internal scratch memories 310, 312 and the
DPE Butffer 114. It is also used to distinguish different DPE
task events at the interrupt FIFO’s. The LCI search ID is
used by LCI tasks, wherein any running LCI tasks are
required to use unique LCI search ID’s. The search ID of an
LCI task is used to index internal scratch memories 310, 312
and the L.CI Buffer 115. It is also used to distinguish different
LCI task events at the interrupt FIFO’s. The SSC ID is used
to distinguish different SSC search task events at the inter-
rupt FIFO’s and to index the SSC Buffer 140. Further, each
‘Walsh sub-task within each Walsh set has a unique Walsh ID
to distinguish itself from other Walsh sub-tasks, as discussed
further herein below.

The CCP 100, as stated above, maintains a MAX__
TASKS-bit Task Start/Stop Status register that reflects which
tasks are “enabled.” Enabled tasks are those that are
“running”, “waiting to run”, or “waiting to stop.” The CCP
100 only fetches a task if it is enabled. Therefore, disabled
tasks. are skipped over and do not expend CCP cycles. The
CCP 100, according to one preferred embodiment, can
autonomously disable/stop tasks that have completed,
including PSC search, DPE, L.CI and PICH. All other tasks
are most preferably stopped by the host processor. The CCP
100 cannot autonomously start any tasks. The host processor
generally requests the starting and stopping of CCP 100
tasks at the task update boundary 400, and as stated herein

10

15

20

25

30

35

40

45

50

55

60

65

24

before, all tasks may be started or stopped on an individual
basis. The host processor sets the appropriate Task Request
bit and writes the type of request to the Task Request register
for the task. A task that is enabled may or may not be
actively running as it depends on whether its start time has
been reached. If the start time has not been reached, then the
enabled task is “waiting to run,” and one 100 cycle is
expended per task. A task that is “running” or “waiting to
stop” is actively running and may consume several CCP 100
cycles.

With continued reference now to FIG. 49, and keeping the
above rules in mind for the embodiments disclosed herein,
the CCP 100 will transition from a “stopped” to a “waiting
to run” state when a synchronous start is requested as
represented by transition “A.” The CCP 100 will transition
from a “waiting to run” state to a “stopped” state when an
immediate stop is requested as represented by transition
“B.” The CCP 100 will transition from a “waiting to run”
state to a “running” state when the slot activation time
arrives, as represented by transition “C.” The CCP 100 will
transition from a “running” state to a “waiting to stop” state
when a synchronous stop is requested, as represented by
transition “D.” The CCP 100 will transition from a “waiting
to stop” state to a “stopped” state when either the slot
activation time arrives or an immediate stop is requested, as
represented by transition “E.” The CCP 100 will transition
from a “running” to a “stopped” state, as represented by
transition “F” when an immediate stop is requested or a task
finally completes. Finally, the CCP 100 will transition from
a “stopped” state to a “running” state, as represented by
transition “G”, when an immediate start is requested.

The finger task has been found to require periodic adjust-
ments to its timing due to the nature of the channel. This
process is accomplished, as described below, using the
timing adjust feature in the foregoing Task Request/Task
Request ID registers, and begins by first writing the com-
plete new finger task information to the Task Buffer 180,
including changes to sample number, to the timing adjust
direction bits, and to the frame offset (if any). The Task
Request ID information is next written to the appropriate ID
register, including setting the Timing Adjust Enable, Load
Enable, and Load Immediate bits. Finally, the appropriate bit
is set in the Task Request register such as discussed herein
above with reference to FIG. 8. Infrequently, timing adjust-
ments were found to force the CCP 100 to de-spread 32
chips at once, rather than 16 chips. The Data Path 300 was
found, in most situations, to accommodate the extra symbols
or partial symbols in every respect. The maximum symbol
energy in one embodiment however, was found not to take
into account the extra 16 chips when the spreading factor
was either 4 or 8.

A task most preferably can be synchronously reconfigured
with reference to its own slot/frame timing. This feature can
be used to support compressed mode, described herein
below, as well as other synchronous reconfigurations. A task
can preferably start, stop, or reload its configuration on slot
boundaries, as discussed above, by requesting the appropri-
ate action for that task and identifying the slot boundary for
that action to occur. If a Walsh table needs synchronous
modification, a new Walsh pointer and new Walsh entry
should preferably be reloaded. Similarly, if a FSB Configu-
ration Table 1500 entry needs modification, the FSB Con-
figuration (FSBC) ping/pong entry for that task, which is not
in use, should preferably be modified and reloaded.

FIG. 50 illustrates a finger modification technique 5000 in
compressed mode according to one embodiment of the
present invention and that is suitable for use with the CCP

US 6,650,694 B1

25

100. When a finger goes in and out of compressed mode, it
may need to allocate additional memory to accommodate the
doubling of the number of symbols with the reduction of
spreading factor (SF). The unused ping/pong FSB Configu-
ration Table 1500 entry may be modified, and the finger task
reloaded so that the new FSB configuration is referenced. A
technique according to one embodiment is summarized
below to exemplify finger modification during compressed
mode.

1) Set finger nominal conditions, nominal SF, and start the
finger;

2) When notified of compressed mode during the last
normal frame, write a new task description to the Task
Buffer 180 which contains the compressed-mode infor-
mation to be reloaded as its task description at the end
of slot 14 (15 slot), including change of SF, Walsh
pointer, and FSB configuration pointer as necessary.
Write a Task Request to synchronously reload the task
at the end of slot 14 (5002);

3) After the swap described in step 2 has occurred (and its
slot ID is no longer needed), write a Task Request to
synchronously stop the task at the end of the appropri-
ate slot (5004);

4) After the task stops (and its slot ID is no longer
needed), write a Task Request to synchronously start
the task (again) at the appropriate slot (5006). (The old
task description is ready to run again with no modifi-
cations required); and

5) After the task starts, write a Task Request to synchro-
nously reload the task (back to the nominal conditions)
at the end of slot 14 (15? slot) 5008. (The original,
nominal task description is waiting in the software side
of the Task Buffer 180, ready to run again with no
modifications required).

All CCP 100 tasks can be started immediately, as stated
above, on the task update boundary 400 at which the request
is made, or synchronously to its own slot timing. The
starting slot may be radio slot 0 through 14 or the next radio
slot (signified by using slot 15). According to one
embodiment, a task that is “waiting to run” expends one
CCP 100 cycle until it enters the “running” state, at which
time it uses the number of CCP 100 cycles determined by its
specifications. Most preferably, the DPE, PCI, L.CI and
PICH tasks are started on a slot boundary to ensure proper
operation. It shall be understood that in some situations, an
immediate start of a finger task may be desirable; however,
the EOL data in this situation will not be correct until after
the completion of the first full frame.

It shall be further understood that some tasks execute
without end, while other tasks have well defined end times.
According to one embodiment, finger and SSC tasks are
continuous while DPE, PSC, LCI and PICH tasks are
one-shot tasks. These tasks are now described in more detail
below with reference to FIGS. 51-60, to further exemplify
functional capabilities and operational characteristics for
one embodiment of the CCP 100. It shall be understood that
other embodiments of the CCP 100 can also be formulated,
for example, by setting all “unused” bit fields to zero to
provide for compatibility with specific other embodiments.

The finger task, as stated herein before, is used for
demodulating fingers and EOL measurement (DLL support).
De-spread finger symbols are stored in the Finger Symbol
Buffer 106 and EOL measurements are output to the EOL
Buffer 116. The finger task can activate up to three interrupts
including pilot, TPC and End-of-slot. These interrupts are
enabled and specified using the Finger Interrupt Table 1002

5

10

15

20

25

30

35

40

45

50

55

60

65

26

described in reference to FIG. 10. EOL results are output
once per frame; and since the finger tasks have no stored
history, results are based on the current radio slot number.
This means that if a finger is started at other than a frame
boundary, it will become re-synchronized on the next frame
boundary. After completing the first full frame, the EOL
results will then be correct. (However, symbol results will be
immediately valid). Regarding EOL measurements, the
number of time-slots to coherently accumulate the pilot may
be N, ¢=0.4,1,2,3,5,7 and 15. Thus, there are round-down
(15/Ny) energy accumulations per frame. If N, does not
divide into 15, the last fractional remaining (15/N) round-
down (15/N) slots of pilots in the frame are not used in the
energy accumulation. The slot interrupt of the finger task is
intended to be used to service the FSB 106, retrieving a slot
of symbols which have been completed. The information
stored in the interrupt FIFO discussed above in reference to
FIGS. 32-39, includes the buffer slot number to assist in
identifying the location of the completed symbols. Since
there are 15 slots per frame, the first slot of data processed
after a finger task begins running will not necessarily be in
the first slot of the multi-slot circular buffer defined in its
FSB configuration entry. The host processor therefore most
preferably obtains this information from the interrupt FIFO.
After the first slot of information is stored, the subsequent
slots are stored as would be expected in a circular buffer
arrangement. The maximum energy value of each Finger
ID/Walsh ID combination is dumped, once per slot, into a
four slot circular buffer (Finger Max Buffer 4200) to assist
in combining RAKE symbols.

FIG. 51 illustrates a finger task buffer 5100 formatted
according to one preferred embodiment that is suitable for
use in association with the CCP 100. The finger task can be
seen to have a task opcode 5102 (e.g., 0100). The finger task
also includes an Input ID 5104 that operates to select a
particular input buffer 102 of I/Q data 302 to process. A
Finger ID 5106 is a user defined field that contains a unique
identification number for all finger tasks. A spreading factor
5108 (e.g., 4, 8, 16, 32, 64, 128, 256, 512), is mapped in
order to bit values “000” through “111.” The N field 5110
(pertains to EOL processing only) is used to implement the
number of time-slots to coherently accumulate the pilot, if
coherent accumulation is chosen for EOL. The N, field
5110, according to one embodiment, is limited to the values
shown in Table 2 below.

TABLE 2
N field values

Nrg Coherent length (time slots)
‘0000 0.4

“0001” 1

“0010” 2

“0011” 3

‘010X 5

‘011X~ 7

“IXXX” 15

A Walsh Pointer 5112 selects one of 32 sets of Walsh
sub-tasks in the Walsh Table 1300. A Sample #5114 is used
to select which sub-chip samples to process. A Compressed
bit 5116 is set at “1” to indicate the finger is in compressed
mode, which effects EOL processing. If the finger is starting,
then the coherent and non-coherent accumulations are
cleared. While the finger is running, the running non-
coherent sum is dumped each time a new computation is
completed. Timing Adjust bits 5118 reflect a change in

US 6,650,694 B1

27

sampling time for the finger task. The options include no
change and +/-delta, where delta is one sub-sample of a
chip. The timing update is not reflected in the sample field
of the task; instead the information is stored internally to the
CCP 100. Values for delta may be “00” representing no
change, “01” representing +1 sub-chip sample adjustment
(to later sample), and “1X” representing—1 sub-chip sample
adjustment (to earlier sample). A Task Timing Adjust
Request bit must be set for the task, and any changes to the
finger task’s sampling time and long code offset fields of the
task description written to the Task Buffer 180 must be
swapped-in to correctly adjust a specific finger task timing.
The Timing Adjust Request bit informs the CCP 100 of the
changes to sampling time and long-code offset of the finger
task that have happened so that it could modify its internal
processing accordingly. It can be seen that if changes to
either the sampling time or long-code offset are made, and
a Task Timing Adjust Request not made, the finger task may
output erroneous results and trigger interrupts at incorrect
times. An FSBC ping/pong bit 5120 is set at “0” to use the
ping side of the FSB Configuration Table 1500 to determine
where to output symbols, and is set at “1” to use the pong
side of the FSB Configuration Table 1500. A Frame Offset
field 5122 specifies the offset of the frame with respect to the
start of the Long Code. This will most preferably always be
a multiple of 256 chips, so the field 5122 specifies the
multiple of 256 chips from the Long Code offset. The start
of the frame most preferably always follows the start of the
Long Code, so the field 5122 is specifying how much later
(unsigned). A Long code plus Frame Offset field 5124
specifies the offset, with respect to the global chip count
(GCQ), at which the frame begins. The four MSB’s specify
the offset in radio time slots, and the remaining LSB’s
specify the additional sub-slot in chips, as stated herein
above. A field of N, bits 5126 represent the number of
active Walsh sub-tasks minus one. This parameter specifies
that the first N, ,;.,+1 Walsh sub-tasks are all active. For
finger tasks with finger ID’s greater than or equal to NUM__
LARGE_ FINGERS, this field 5126 is limited to “0007,
“0017, “010” and “011.” The EOL_en field bits 5128
specify if one of the Walsh sub-tasks is an EOL Walsh
sub-task. Setting EOL__en field bits to “1” specifies the first
Walsh sub-task must be the EOL Walsh sub-task, wherein
EOL processing is decimated by 4 when the spreading factor
is 4, and decimated by 2 when the spreading factor is 8 (a
limitation that applies only to DPCCH, not CPICH) accord-
ing to one preferred embodiment of the invention. A Pilot
location bit 5130 directs the CCP 100 to select-pilot region
0 or 1 from the Pilot-TPC Position Table discussed above
with reference to FIG. 17, for use in the determination of a
pilot interrupt for the finger task (the EOL processing may
use a different pilot location, that is specified in association
with a Walsh sub-task). Finally, a Long Code ID field 5132
specifies Gold code used for long-code scrambling (0-24,
575). The finger task requires a number of cycles equal to the
number of non-EOL sub-tasks plus the number of cycles
required for an EOL Walsh sub-task (only one allowed per
finger task), wherein an EOL Walsh sub-task takes three
cycles according to one preferred embodiment.

FIG. 52 illustrates a Walsh sub-task format 5200 suitable
to specify finger non-EOL Walsh entries in the Walsh Table
1300 and FIG. 53 illustrates a Walsh sub-task format 5300
suitable to specify finger EOL and DPE task entries in the
Walsh Table 1300. Entries in the Walsh Table 1300 are used
primarily for finger and DPE tasks. An EOL Walsh sub-task
is most preferably required to be at the first location when
there is an EOL Walsh sub-task. Two options most prefer-

10

15

20

25

30

40

45

50

55

60

65

28

ably provide for fewer than the maximum number of entries
(8 or 4). The first option requires the Walsh sub-tasks to
appear at the beginning of the Walsh set and be consecutive,
wherein the N, ., field 5126 is set to the appropriate size.
The second option is to specify that any Walsh sub-task that
is not used in the first N, ;. field 5126 must have its Walsh
disable bit set to indicate that it is disabled. A drawback to
the second option is that a cycle will be expended for each
of the N, ;. sub-tasks, even when a sub-task is disabled.
Walsh sub-tasks, as stated herein before, are most preferably
operated in consecutive address order within a set.

With continued reference now to FIG. 52, the Walsh
sub-task parameters for non-EOL finger tasks can be seen to
include a Walsh disable bit 5202 that specifies if an associ-
ated Walsh sub-task is enabled or disabled, wherein a Walsh
disable bit 5202 that is set at “1” disables the associated
Walsh sub-task. A Walsh ID 5204 is a user defined field that
iS unique in a particular Walsh sub-task set of the Walsh
Table 1300. A Walsh Id 5204 may preferably be reused in
other Walsh sub-task sets in the Walsh Table 1300. A Walsh
Code 5206 specifies the Walsh-Hadamard code number, and
for a spreading factor (SF) <512, this Walsh Code 5206
number is most preferably log,(SF) bits, left justified and
right filled with zeros. In this way, the Walsh Code 5206
number for SF=512 matches the same code number and
code pattern of the other spreading factors.

Looking again at FIG. 53, the Walsh sub-task parameters
for finger EOL and DPE tasks are seen to also include a
Walsh disable bit 5302, that when set at “1”, disables its
associated Walsh sub-task. A Walsh Code field 5304 oper-
ates as described above with reference to FIG. 52 for Walsh
sub-task parameters for non-EOL finger tasks. Setting a
Coherent Option bit 5306 specifies that coherent processing
for more than one symbol is selected (implies a pilot region);
otherwise coherent processing is limited to one symbol, and
energies are accumulated over many symbols (pilot or
non-pilot region). A Processing Specifier field 5308 is used
for multi-symbol coherent processing (pilot only). The Pro-
cessing Specifier field 5308 allows for 1) coherent accumu-
lations of longer than a single symbol, wherein N specifies
the length of the coherent accumulation, as discussed herein
before; and 2) single-symbol coherent processing (pilot or
non-pilot), that allows for non-coherent accumulation of
symbols and wherein N is ignored.

FIG. 54 illustrates a more detailed diagram of a Process-
ing Specifier field 5400 for multi-symbol coherent process-
ing according to one preferred embodiment and that is
suitable for use in association with the CCP 100. The
Processing Specifier field 5400 is seen to have a Pilot Region
bit 5402 that is used to specify one of two pilot regions
specified in the “Pilot-TPC Position Table” discussed herein
before with reference to FIG. 17. A Pilot Bits Selection field
5404 is used to select one of four options (values “1”
through “4”) in the Pilot Bits Table discussed above with
reference to FIG. 18, or the common Pilot Channel (value
“0”). A Transmit Diversity Enable bit 5406 is set at “1” to
enable diversity pilot processing such that energies from two
antennas are combined.

FIG. 55 illustrates a more detailed diagram of a Process-
ing Specifier field 5500 for single-symbol coherent process-
ing according to one preferred embodiment and that is
suitable for use in association with the CCP 100. The
Processing Specifier field 5500 can be seen to also have a
Pilot Region bit 5502 to allow selection of one of two pilot
regions specified in the “Pilot-TPC Position Table” dis-
cussed above. A Pilot/Non-Pilot bit 5504 is set at “1” to
select the pilot region as defined by the Pilot Region bit

US 6,650,694 B1

29

5502, or is otherwise set at “0” to select a region outside of
the defined pilot region. Setting the Process All bit 5506 at
“1” causes the Pilot/Non-Pilot bit 5504 to be ignored. All of
the symbols in the slot are processed when the Process All
bit 5506 is set at “1” and only the symbols in the region
defined by the pilot region and the Pilot/Non-Pilot bit 5504
are process when the Process All bit 5506 is set at “0.”

FIG. 56 illustrates one DPE search task format 5600 for
several DPE search task parameters associated with DPE
task registers 5602, 5604, 5606, 5608, and 5610 according
to one preferred embodiment and that is suitable for use in
association with the CCP 100. The DPE search measures
path energies in a specified window of offsets. Two offsets
are searched in each CCP cycle. It supports the determina-
tion of the strongest paths on any Walsh code channel (which
may or may not be beam-formed). When two input antennas
are present, an alternating antenna mode can be selected in.
which alternate symbols are de-spread from alternate anten-
nas. Results are stored in the DPE Buffer 114 discussed
above. Each DPE search task has a unique DPE search ID
to distinguish itself from other DPE tasks. The search ID
controls where in the DPE Buffer 114 the results are stored.
The search ID most preferably must not be changed while
the DPE task is running, since erroneous results will likely
occur for some embodiments of the CCP 100. The DPE
search task operates in a one-shot mode, as stated herein
before. When pilot symbols are accumulated coherently
over multiple symbols, (specified by Coherent Option bit
5306=“1” in the Walsh sub-task), N ¢ controls the number
of radio time slots of coherent accumulation, and results are
output N,¢*Ny s radio time slots after the start of the task.
When symbol energies are accumulated, (specified by
Coherent Option bit 5306=0" in the Walsh sub-task), N
is ignored and results are output N, radio time slots after
the start of the task. The values for N, and Ny, are read
from the DPE Energy Accumulation Table referenced by the
search ID and discussed herein before in association with
FIG. 22. The DPE search, as stated above, is decimated by
4 when the spreading factor is 4, and decimated by 2 when
the spreading factor is 8 (a limitation which applies only to
DPCCH, not CPICH).

Looking again at FIG. 56, the DPE search task parameters
are seen to include a task Opcode field 5612 (e.g., “00117)
as well as an Input ID field 5614 that is used to select an
input buffer within a plurality of Input Buffers 102. An
Alt__Ant bit 5616 is used to select an alternating antenna
mode from two input buffers within the plurality of Input
Buffers 102. A DPE Search ID 5618 distinguishes different
DPE tasks. A Spreading factor field 5620 for SF=4, §, 16, 32,
64, 128, 256, or 512, is mapped in order bit values “000”
through “111.” An Interrupt Enable field 5622 is used to
characterize interrupts, wherein the MSB enables an inter-
rupt and the two LSB’s specify a particular interrupt FIFO.
A Walsh Pointer field 5624 is used to select a Walsh sub-task
set, wherein the Walsh sub-task in the first location is used
and further wherein the Walsh enable field of other sub-tasks
are ignored thereby ignoring other Walsh sub-tasks. A
Sample # field 5626 is used to select which sub-chip sample
to be “ontime.” A Frame Offset field 5628 within DPE task
register 5606 is used to specify the offset of a frame with
respect to the start of the Long Code. The Frame Offset is
most preferably always a multiple of 256 chips, so the Frame
Offset field 5628 specifies the multiple of 256 chips from the
Long Code offset. The start of the frame most preferably
always follows the start of the Long Code, so the Frame
Offset field 5628 is specifying how much later (and is
unsigned). ALong Code plus Frame Offset field 5630 is used

10

15

20

25

30

35

40

45

50

55

60

65

30

to specify the offset, with respect to the global chip count, at
which the frame begins, wherein the four MSB’s specity the
offset in radio time slots, while the remaining LSB’s specify
the additional sub-slot in chips. A %2-chip enable bit 5632 is
used to enable processing of samples at %-chip resolution. A
Window Size field 5634 (5 bits), is used to specify a window
size of 16*(n+1) relative to Long Code Offset, wherein
0=n<31. A Long Code ID field 5636 is used to specify Gold
code associated with long-code scrambling. According to
one embodiment, the DPE search task requires a number of
cycles equal to half the number of offsets in the window size,
regardless of whether Y2-chip processing is enabled.

FIG. 57 illustrates one PSC search task format 5700 for
several PSC search task parameters associated with PSC
task registers 5702, 5704, 5706 and 5708 according to one
preferred embodiment and that is suitable for use in asso-
ciation with the CCP 100. The PSC search task supports the
locating of PSC in the WCDMA standard, which determines
slot timing. The results are stored in the PSC Search Buffer
118 and can be read by the host processor once the task
completes. In one embodiment, only one running PSC
search task is allowed at any time, and it most preferably
must be the first task to run in order for the post-processing
hardware to have time to complete its processing, as stated
herein before.

Looking again at FIG. 57, the PSC search parameters are
seen to include a task Opcode field 5710 (e.g., “0001”). An
Input ID field 5712 is used to select an input buffer from the
plurality of Input Buffers 102. An Interrupt Enable field
5714 is used to characterize interrupts, wherein the MSB
enables an interrupt and the two LSB’s determine the
interrupt FIFO. A %:-Chip En field 5716 is used to enable
processing of samples at Y5-chip resolution. An N field
5718 is used to specify a number of radio slots to accumulate
energy. A Sample # field 5720 is used to select which
sub-chip sample to be “ontime.” A Window Start Offset field
5722 is used to specify a start time for the task in chips. A
Window Size field 5724 is used to specify the number of
chips to be included in the window. According to one
embodiment, the PSC search task requires 16 cycles,
wherein the task is activated when the GCC modulo 2560 is
equal to the value specified in the Window Start Offset field
5722.

FIG. 58 illustrates one SSC search task format 5800 for
several SSC search task parameters associated with SSC
task registers 5802, 5804 and 5806 according to one pre-
ferred embodiment and that is suitable for use in association
with the CCP 100. The SSC search task performs part of the
stage-2 WCDMA base-station search discussed herein
before. It operates only on the masked-out symbol of a Perch
channel and outputs 16 symbols de-spread by the SSC (of
16-chip length), as well as 16 symbols de-spread by the PSC,
per radio time slot. In this way, the SSC search task operates
similarly to a finger task. The remaining stage-2 processing,
including applying the second level of SSC coding, the
Walsh-Hadamard transform, and matched-filtering with
Comma-free code, takes place in the host processor or in
hardware outside of the CCP 100, as stated herein before.
The masked-out symbol location is specified in the Search
Code Symbol Location register discussed herein above with
reference to FIG. 23. The SSC search task most preferably
uses a SSC ID that is unique to any other SSC search tasks
and does not use a Walsh Pointer for data processing. The
resulting SSC and PSC are placed in a four slot circular
buffer within the SSC Buffer 140 discussed herein before in
association with FIG. 47, wherein the SSC search activates
an end-of-slot interrupt when a complete slot of data is ready

US 6,650,694 B1

31

in the SSC Buffer 140. The SSC search task starts and stops
as discussed herein above with reference to FIG. 49.

With continued reference to FIG. 58, the SSC search task
parameters are seen to include an Opcode field 5808 (e.g.,
“0101”) as well as an Input ID field 5810 that is used to
select an input buffer from the plurality of Input Buffers 102.
A SSCID field 5812 is a user defined field that is a unique
identification number for all SSC tasks. An Interrupt Enable
field 5814 utilizes the MSB to enable an end-of-slot interrupt
and the two remaining LSB’s specify a particular interrupt
FIFO. A Sample # field 5816 is used to select which sub-chip
sample to be “ontime.” The GCC Offset field 5818 causes
the “frame” timing to be like a finger with LC Offset=GCC
Offset and Frame Offset=0. Frame timing for SSC search, is
however, arbitrary since the purpose of SSC search is to
establish frame timing. Having a specific “frame” time does
allow the SSC Buffer 140 and associated SW to have some
time reference in relation to the new frame timing that will
be established. In a manner similar to the DPE search task,
the four MSB’s specify the offset in radio time slots while
the remaining L.SB’s specify the additional sub-slot offset in
chips.

FIG. 59 illustrates one LCI search task format 5900 for
several LCI search task parameters associated with LCI task
registers 5902, 5904, 5906, 5908 and 5910 according to one
preferred embodiment and that is suitable for use in asso-
ciation with the CCP 100. The LCI search task supports the
determination of the long code from a group of long codes
(“stage 3 search”) which were determined in “stage 2
search” by processing the CPICH. The results are stored in
the LCI Buffer 115. Each LCI search task has a unique LCI
search ID to distinguish itself from other L.CI tasks. The LCI
search ID controls where in the LCI Buffer 115 the results
are stored. Most preferably, this search ID must not be
changed or altered in any way while the LCI task is running,
otherwise erroneous results likely will occur in association
with various embodiments of the CCP 100. As stated herein
before, the LCI search task operates in one-shot mode.
Following the start of the L.CI search task, pilot symbols are
accumulated coherently over multiple symbols, whereas N,
controls the number of radio time slots of coherent accu-
mulation and results are output N,;*N,, ¢ radio time slots.
The values for N, and Ny are read from the LCI Energy
Accumulation Table as discussed herein above in associa-
tion with FIG. 22 and referenced by the search ID. The LCI
search task most preferably always processes the Common
Pilot Channel and antenna diversity is an option.

Looking again at FIG. 59, the LCI search task parameters
can be seen to include a task Opcode 5912 (e.g., “0010”) as
well as an Input ID 5914 that is used to select an input buffer
from among the plurality of Input Buffers 102. The LCI
search task is seen to also include an Interrupt Enable field
5916 that is used to characterize interrupts wherein the MSB
enables an interrupt and the two LSB’s are used to specify
a specific interrupt FIFO. A Sample # field 5918 is used to
select a specific sub-chip sample to be “ontime” and a
Search ID field 5920 is used to distinguish among different
LCI tasks. The LCI task register 5906 contains a Long Code
Offset field 5922 that is used to specify the offset of long
code start with respect to the global chip count, wherein the
four MSB’s specify the offset in radio time slots, and the
remaining [.SB’s specify the additional sub-slot offset in
chips. A Transmit (TX) Diversity Enables field 5924 speci-
fies the transmit diversity for each of the long codes to be
tested. According to one preferred embodiment a “1” is used
to enable diversity pilot processing such that energies from
two antennas are combined, wherein the bits correspond to

10

15

20

25

30

35

40

45

50

55

60

65

32

the Code Enables field 5926 bits. A Long Code Group
Number field 5928 is used to specify which group of 64 code
groups, each having 8 long codes, to process and test. A
Long Code Set field 5930 specifies the main code set (e.g.,
“007), the even alternative set (e.g., “017), or the odd
alternative set (e.g., “10”). A Ys-chip enable bit 5932 is
preferably set at “1” to enable processing of %-chip late
samples. A Code Enables field 5926 specifies which of the
8 long codes to test, wherein a single bit enables the testing
of each long code (e.g., bit 7 for code 7 . . . down to bit 0
for code 0) and a single bit is preferably set at “1” to indicate
the code should be tested. According to one embodiment,
completion of the LCI search task requires a number of
cycles equal to the number of long codes to be tested.

FIG. 60 illustrates one paging indication channel (PICH)
search task format 6000 for several PICH search task
parameters associated with PICH task registers 6002, 6004,
6006, 6008 and 6010 according to one preferred embodi-
ment and that is suitable for use in association with the CCP
100. The PICH search task de-spreads symbols in a specified
window of offsets at Y2-chip resolution. Results are stored in
the Finger Symbol Buffer 106 according to the finger ID
used, and the Walsh ID pointed to by the Walsh Pointer
described above in association with FIG. 13. Each PICH
task has a unique finger ID to distinguish itself from other
PICH and finger tasks. Resulting data is placed in the Finger
Symbol Buffer 106 (described in further detail herein
below), starting from the location determined by the FSB
Configuration Table 1500 ping entry for the Finger/Walsh ID
combination. The symbols are stored for the first window
offset “ontime” (1-8 symbols) followed by the first window
offset “late-time” (1-8 symbols), followed by the second
window offset “ontime” (1-8 symbols), and so on. If fewer
than 8 symbols are requested, space is left for the missing
symbols in the FSB 106, but the data space is undefined. As
stated above, the PICH search task operates in one-shot
mode for 1-8 symbols in association with a spreading factor
of 256.

Continuing now with FIG. 60, the Paging Indication
Channel (PICH) De-spreading (search) task parameters can
be seen to include a task Opcode 6012 (e.g., “01117) as well
as an Input ID 6014 that is used to select an input buffer from
among the plurality of Input Buffers 102. The PICH search
task is seen to also include an Interrupt Enable field 6018
that is used to characterize interrupts wherein the MSB
enables an interrupt and the two LSB’s are used to specify
a particular interrupt FIFO. A Walsh Pointer field 602 selects
a particular Walsh sub-task set in which the Walsh sub-task
in the first location is used while others are ignored along
with any associated Walsh sub-task enable field. A Sample
field 6022 is used to select a specific sub-chip sample to
be “ontime” and a Finger ID field 6016 is used to distinguish
among different finger and PICH tasks. The N_ Symbols
field 6024 determines the number of symbols for the instruc-
tion to process (“000” through “111” indicate 1 through 8
according to one embodiment). A Frame Offset field 6028
within PICH task register 6006 is used to specify the offset
of a frame with respect to the start of the Long Code. Most
preferably, this is always a multiple of 256 chips, wherein
the field 6028 specifies the multiple of 256 chips from the
Long Code offset. The start of the frame most preferably
always follows the start of the Long Code such that the field
6028 is specifying how much later (preferably unsigned).
The PICH task register 6008 contains a Long Code plus
Frame Offset field 6030 that is used to specify the offset with
respect to the global chip count at which the frame begins,
wherein the four MSB’s specify the offset in radio time slots,

US 6,650,694 B1

33

and the remaining LSB’s specify the additional sub-slot
offset in chips. A %:-chip enable bit 6032 is used to enable
processing of samples at %-chip resolution. A Window Size
field 6026 (5-bits) is used to specify a window size of
16*(n+1) relative to Long Code Offset, wherein n is equal to
or greater than 0, but less than 31. Finally, a Long Code ID
field 6034 specifies Gold code used to accommodate long-
code scrambling. According to one embodiment, completion
of the PICH search task requires a number of cycles equal
to the number of offsets in the window size, regardless of
whether Y2-chip processing is enabled.

FIG. 61 illustrates one embodiment of a circular buffer
6100 within the Finger Symbol Buffer 106. As stated above,
the Finger Symbol Buffer 106 stores complex I and Q
symbols that result from finger tasks. All symbols, including
pilot, TPC, data, and the like, are stored in the Finger
Symbol Buffer 106 after they are received and processed by
the CCP 100 Data Path 300. The Finger Symbol Buffer 106
is implemented as many multi-slot circular buffers 6100.
The Finger Symbol Buffer 160 according to one embodi-
ment is implemented such that a total of 20 K (twenty-
thousand) complex symbols (32-bits/symbol) can be stored
at spreading factors from 8 to 512, or 40 K (forty-thousand)
complex symbols (16-bits/symbol) can be stored at spread-
ing factor 4. Each Walsh channel of each finger most
preferably uses a different circular buffer 6100 to store
symbols in order to minimize the reconfiguration of symbol
buffering when fingers or Walsh channels are added and
removed. According to one embodiment described above,
the total size of the FSB 106 is 20 Kx32-bit words. Each
finger ID/Walsh ID combination preferably specifies a
multi-slot circular buffer 6100 in the FSB 106 that will be
used to store its data, wherein each slot 6104 has a starting
address 6102 such that one or more offsets 6106 can be
defined between the starting addresses 6102 associated with
the slots 6104. This feature allows Walsh channels for the
same finger task to be placed adjacent to one another on a
slot by slot basis. According to one embodiment, the host
processor (e.g., DSP) is responsible to ensure that there is no
overlap between buffers 6100 for a single finger ID/Walsh
ID combination and between different finger ID/Walsh ID
combinations. Each circular buffer 6100 is most preferably
four radio slots long. Most preferably, the starting slot for
data when an instruction is started is determined by
hardware, and must be read by software to maintain syn-
chronization due to the four slot circular buffer in combi-
nation with a 15 radio slots per frame requirement. Accord-
ing to one embodiment, a super-frame count from O to 3 is
kept as an adjunct to GCC to provide a reference to the
hardware in determining which FSB slot 6104 in the circular
buffer 6100 in which to place data.

The FSB Configuration Table 1500 is used to assign the
despreader data associated with a particular finger ID and
Walsh ID to a particular circular buffer 6100. The Finger
Symbol Buffer 106 also serves as intermediate storage for
downstream symbol processing, and is accessible on both
the DSP Bus 104 and the FSB External Bus 108 to facilitate
symbol processing in hardware and/or software as stated
herein before. The DSP Bus 104 allows access by the host
processor either directly or via DMA; while the FSB Exter-
nal Bus 108 access allows downstream hardware to directly
access finger data.

Looking again at FIGS. 1 and 5, there are six interrupt
lines 170 from the CCP 100 that are connected to an internal
interrupt generator 165 as discussed above. There are four
general-purpose interrupts that come from four FIFO’s
described herein before with reference to FIGS. 32-39. The

10

15

20

25

30

35

40

45

50

55

60

65

34

remaining two interrupts are comprised of a system interrupt
and an error interrupt. Each of the four Interrupt FIFO’s
(registers) contains interrupt-event information that comes
from CCP tasks. A finger task, for example, can trigger
multiple interrupt events that may be mapped to a particular
interrupt FIFO. Preferably, each FIFO may store up to
N,,..rrro=16 task-based interrupt events, wherein reading the
FIFO by the host processor decrements the number of
contained events. A FIFO is used to accommodate many
interrupt events triggered by CCP tasks, and allows the host
processor to optimize the servicing of CCP interrupts. As
discussed above, each task may map its interrupt events to
any interrupt FIFO using the Finger Interrupt Table 1002
and/or the Interrupt Enable field in the task specification
described herein with reference to FIGS. 56—60. Finger
interrupt events that may be mapped to interrupt FIFO’s
using the Finger Interrupt Table 1002 include a pilot inter-
rupt event, TPC interrupt event, and slot interrupt event. The
foregoing interrupt events most preferably can be mapped to
any FIFO, including the same FIFO. According to one
embodiment, all other tasks can trigger one task-based
interrupt event each that is enabled and mapped to a FIFO
using the above described Interrupt Enable field. When a
task event occurs, a task opcode, task ID, finger task
interrupt events data, and GCC data is written into a FIFO
to formulate one FIFO entry that can be accessed by the host
processor on the DSP Bus 104 using two read accesses.
Interrupt events data, according to one embodiment, applies
only to finger tasks, and is used to specify the particular
finger task based events. When multiple finger interrupt
events occur in the same CCP cycle, a maximum of one
FIFO entry is logged to any given FIFO. This field therefore
indicates not only which one of the events, but which
combination of events. For one embodiment, the GCC is
preferably implemented at a resolution of 16 chips, and an
attempt to read an empty FIFO will return all zeros on the
data bus. As task events occur, their status data are imme-
diately entered into the FIFO that is mapped. These entries
however, cannot be read until the next 16-chip boundary at
which time the task events also activate the requisite FIFO
non-empty status field. Many entries may be written to a
FIFO in a single CCP iteration, but these entries cannot be
read until the next 16-chip boundary.

In addition to the above general purpose interrupt events,
aTask_Update Interrupt event such as discussed above with
reference to FIG. 48 as well as Error Interrupt events
including, but not necessarily limited to, number of allowed
cycles exceeded and FIFO overflow (4-bits) are accommo-
dated by the CCP 100. The external interrupts are activated
when the interrupt events mapped to them are activated.
Activation timing for interrupt events according to one
preferred embodiment is as follows:

1) A FIFO (non-empty) event occurs in which the non-
empty status of a FIFO is only activated at the next
16-chip boundary following the CCP cycle where the
task-based event occurs. Although the task event infor-
mation is entered into the FIFO when the task-based
event occurs, this new entry cannot be read until the
next 16-chip boundary and does not affect the FIFO’s
non-empty status;

2) A system interrupt event occurs in which the Task
Update interrupt event occurs at the Task Update
boundary, and wherein the Task Update boundary
always resides on a 16-chip boundary; and

3) An Error interrupt event is activated upon occurrence
of a defined system error. Any external interrupt is
preferably cleared when all of the interrupt events that

US 6,650,694 B1

35

are mapped to it are cleared, such as by 1) reading out
by the host processor of all FIFO entries, 2) reading of
the System Interrupt Event Status register by the host
processor, and 3) reading of the Error Interrupt Event
Status register by the host processor.

In summary explanation of the above, the present inven-
tion is programmable, highly flexible, vector-based correla-
tor co-processor (CCP 100) that performs CDMA base-
station and handset RAKE receiver operations for multiple
channels. Because most RAKE receiver functions involve
correlations and accumulations, regardless of the particular
wireless protocol, a centralized correlation machine can be
used for various RAKE receiver tasks like finger
de-spreading and search. The CCP 100, in addition to
performing correlations (complex valued), which consist of
de-spreading and coherent accumulation, also accumulates
“symbol” energy values (non-coherent accumulations).
When used in a base station setting, the CCP 100 can receive
and process multiple I and Q samples from at least 18
antenna sources. The CCP 100 performs chip-rate process-
ing and energy accumulation according to the tasks that a
host processor, e.g. DSP, writes to the CCP Task Buffers 180
to control the CCP 100 operations. Exemplary host proces-
sors suitable for use with the CCP 100 include the
TMS320C641x/C55x DSPs manufactured by Texas Instru-
ments Incorporated of Dallas, Texas. The TMS320C641x/
C55x DSPs perform all symbol-rate receiver operations such
as channel estimation (including phase and frequency
estimation), de-interleaving, feedback loops such as Auto-
matic Gain Control, and Delay Locked Loop.

FIG. 62 illustrates implementation of a digital base-band
system 6200 comprising the CCP 100, a TMS320C641x
DSP 6202, and a maximal-ratio combining (MRC) ASIC
6204. The MRC function can alternatively be implemented
in software. The CCP 100 is responsible for 1) performing
the de-spreading necessary to provide data symbols per
finger to the entity (e.g. DSP or another ASIC), in charge of
the MRC processing, 2) performing EOL energy measure-
ments for a DLL, 3) performing on-chip and %-chip corre-
lations and energy measurements for DPE and search
purposes, and 4) providing raw pilot symbols per finger to
the (C6x/C55x) DSP 6202. The (C6x/C55x) DSP 6202 uses
the computed raw pilot symbols to perform the channel
estimation of each finger. Coefficients of the channel esti-
mation are then sent to the entity in charge of the MRC
processing, ¢.g. MRC ASIC 6204 or (C6x/C55x) DSP 6202.
Using those computed coefficients, the MRC ASIC 6204
multiplies de-spread symbols with the channel estimation
coefficients and then sums the symbols coming from various
fingers (paths) together to provide combined symbols in the
Combined Symbol Buffer (CSB) 6206.

FIG. 63 illustrates a global chip counter (GCC) mecha-
nism 6500 for maintaining timing in a CDMA rake receiver
and that is suitable for use in association with the CCP 100
according to one embodiment of the present invention. A
CDMA receiver keeps track of timing between various
multipath components. The multipath timing is determined
using a path search or delay profile estimation function
familiar to those skilled in the CDMA rake receiver art. The
strongest multipath components are assigned to RAKE
“fingers” that perform a de-spreading operation on each
multipath component. The GCC 6500 is a hardware counter
that counts incoming CDMA signal samples (or “chips”).
The GCC 6500 counts modulo the period “L” 6502 of the
pseudo-noise (PN) sequence used to spread the CDMA
signal. It counts the samples of the CDMA signal (“chips™)
as they arrive at the receiver and are written into an Input

10

15

20

25

30

35

40

45

50

55

60

65

36

Buffer 102. All timing in the receiver is specified relative to
the GCC 6500. A searcher provides path timing, also relative
to the GCC 6500. These path timings may then be trans-
ferred to RAKE fingers. In the event that the finger alloca-
tion is performed in software, the software process does not
need to know the precise timing in the hardware. The path
timings are specified relative to GCC 6500, and the hard-
ware can compute the precise timing by adding the relative
timing value to the current value of GCC 6500. As stated
herein before, all timing in the CCP 100 is relative to the
GCC 6500, including the searcher and RAKE finger offsets.

This invention has been described in considerable detail
in order to provide those skilled in the wireless communi-
cation art with the information need to apply the novel
principles and to construct and use such specialized com-
ponents as are required. In view of the foregoing
descriptions, it should be apparent that the present invention
represents a significant departure from the prior art in
construction and operation. However, while particular
embodiments of the present invention have been described
in detail herein, it is to be understood that various alterations,
modifications and substitutions can be made therein without
departing in any way from the spirit and scope of the present
invention, as defined in the claims which follow. For
example, although certain CCP 100 capabilities and archi-
tectures have been defined above in association with a 3.84
chip rate, the basic architecture concept of the CCP 100
would remain the same for other chip rates. Further,
although the CCP 100 has been described herein to deter-
mine correlation between input data and locally generated
PN sequence(s), other embodiments of the CCP 100 can just
as well be utilized to generate cross-correlation of two
locally generated PN sequences. Such cross-correlation val-
ues may be used by a host processor such as a DSP to
perform IC/MUD in software.

What is claimed is:

1. A correlator co-processor (CCP) for a wireless com-
munication system comprising:

a pseudo-noise (PN) code generator for generating PN
codes;

a Walsh code generator for generating Walsh codes;

at least one input buffer configured to receive and store
in-phase and quadrature phase (I/Q) sub-chip samples;

at least one chip counter (GCC) configured to count chip
samples received by the at least one input buffer and
count modulo a WCDMA long code length and further
configured as a local timing reference for the CCP;

a data path configured to receive and process samples of
the PN codes, samples of the Walsh codes and the 1/Q
sub-chip samples;

at least one task buffer configured to store a list of
programmably executable tasks;

at least one configuration table buffer in communication
with the at least one task buffer and configured to store
a plurality of configuration tables that specify how each
task within the list of programmably executable tasks is
implemented;

an interrupt generator;

at least one output data buffer; and

a controller in communication with the data path, the at
least one task buffer, the at least one configuration
table, the interrupt generator, the PN code generator,
the Walsh code generator, the GCC and the at least one
output buffer, such that the controller, synchronized
with timing signals received from the GCC and

US 6,650,694 B1

37

directed by the programmably executable tasks, can
direct the Walsh code generator to generate the Walsh
codes, can direct the PN code generator to generate the
PN codes and can direct the data path to process the
samples of the PN codes, the samples of the Walsh
codes and the I/Q sub-chip samples and therefrom
selectively generate RAKE receiver data or search
results, store the RAKE receiver data or search results
in the at least one output data buffer, and cause the
interrupt generator to generate at least one task-based
interrupt signal.
2. The correlator co-processor (CCP) according to claim
1 wherein the data path comprises a plurality of multipliers
configured to multiply the I/Q samples from the at least one
input buffer with samples of the PN codes and samples of the
Walsh codes.
3. The correlator co-processor (CCP) according to claim
2 wherein the data path further comprises a plurality of adder
trees configured to generate partial correlation data associ-
ated with the I/Q samples.
4. The correlator co-processor (CCP) according to claim
3 wherein the data path further comprises at least one
coherent accumulator configured to sum the partial correla-
tion data with data associated with at least one previous
partial correlation associated with the I/Q samples.
5. The correlator co-processor (CCP) according to claim
4 wherein the data path further comprises a post-processing
element configured to generate energy data and execute
non-coherent accumulations associated with the I/Q chip
samples.
6. The correlator co-processor (CCP) according to claim
5 wherein the data path further comprises temporary
memory elements configured to store at least some of the
partial correlation data, energy data and intermediate accu-
mulation data associated with the non-coherent accumula-
tions.
7. The correlator co-processor (CCP) according to claim
6 wherein the data path further comprises a plurality of
pipeline stages configured to maximize processing capabil-
ity.
8. The correlator co-processor (CCP) according to claim
1 wherein at least one output data buffer comprises at least
one buffer selected from the group consisting of primary
search code (PSC), delay profile estimation (DPE), long
code identifier (LCI), secondary search code (SSC), Finger
Max, early-ontime-late (EOL), and Finger Symbol buffers.
9. The correlator co-processor (CCP) according to claim
8 further comprising a Finger Symbol buffer (FSB) external
bus capable of providing an external host processor access
to FSB data.
10. The correlator co-processor (CCP) according to claim
1 wherein the controller, directed by the programmably
executable tasks, is configured to further cause the interrupt
generator to generate system interrupts to indicate global
CCP events and error interrupts to indicate detection of error
conditions.
11. The correlator co-processor (CCP) according to claim
1 further comprising an external system interface bus
capable of providing an external host processor access to the
at least one configuration table buffer, the interrupt generator
and the at least one output data buffer.
12. The correlator co-processor (CCP) according to claim
11 wherein the external system interface bus is a RHEA bus.
13. The correlator co-processor (CCP) according to claim
11 wherein the external system interface bus in a EMIF bus.
14. A correlator co-processor (CCP) for a RAKE receiver
comprising:

10

15

20

25

30

35

40

45

50

55

60

65

38

means for generating pseudo-noise (PN) codes;

means for generating Walsh codes;

means for receiving and storing in-phase and quadrature

(I/Q) sub-chip samples;

timing means for counting chip samples received by the

receiving and storing means;

data processing means for processing samples of the PN

codes, samples of the Walsh codes and the I/Q sub-chip
samples;

means for storing a plurality of programmably executable

tasks;

means for storing a plurality of configuration tables;

means for generating interrupt signals;

means for storing output data; and

controlling means in communication with the data pro-

cessing means, task storing means, configuration table
storing means, interrupt generating means, PN code
generating means, Walsh code generating means, tim-
ing means and output data storing means, such that the
controlling means, directed by the programmably
executable tasks, can direct the data processing means
to process the samples of the PN codes, the samples of
the Walsh codes and the 1/Q sub-chip samples, and
therefrom generate RAKE receiver data.

15. The correlator co-processor (CCP) according to claim
14 wherein the controlling means, directed by the program-
mably executable tasks can further cause the interrupt gen-
erating means to generate at least one task-based interrupt
signal.

16. The correlator co-processor (CCP) according to claim
14 wherein the data processing means comprises multiply-
ing means for multiplying the I/Q samples associated with
the receiving and storing means with samples of the PN
codes and samples of the Walsh codes.

17. The correlator co-processor (CCP) according to 16
wherein the data processing means further comprises adding
means for generating partial correlation data associated with
the I/Q samples.

18. The correlator co-processor (CCP) according to claim
17 wherein the data processing means further comprises
coherent accumulating means for summing the partial cor-
relation data with data associated with at least one previous
partial correlation.

19. The correlator co-processor (CCP) according to claim
18 wherein the data processing means further comprises
post-processing means for generating energy data and
executing non-coherent accumulations associated with the
I/Q sub-chip samples.

20. The correlator co-processor (CCP) according to claim
19 wherein the data processing means further comprises
temporary storing means for storing at least some of the
partial correlation data, energy data and non-coherent accu-
mulation data.

21. The correlator co-processor (CCP) according to claim
14 wherein the means for storing output data comprises at
least one buffer selected from the group consisting of
primary search code (PSC), delay profile estimation (DPE),
long code identifier (LCI), secondary search code (SSC),
Finger Max, early-ontime-late (EOL), and Finger Symbol
buffers.

22. The correlator co-processor (CCP) according to claim
21 further comprising means for providing a host processor
direct access to data stored in the Finger Symbol buffer
(FSB).

23. The correlator co-processor (CCP) according to claim
14 wherein the controlling means, directed by the program-

US 6,650,694 B1

39

mably executable tasks, is configured to further cause the
means for generating interrupt signals to generate system
interrupts indicative of global CCP events and to generate
error interrupts indicative of error conditions.

24. The correlator co-processor (CCP) according to claim
14 further comprising means for interfacing the CCP with
RHEA bus compatible digital signal processors.

25. The correlator co-processor (CCP) according to claim
14 further comprising means for interfacing the CCP with
EMIF bus compatible digital signal processors.

26. A correlator co-processor (CCP) for a RAKE receiver
comprising:

a pseudo-noise (PN) code generator having a control input

and a PN code output;

a Walsh code generator having a control input and a Walsh
code output;

at least one input buffer, each input buffer having at least
one in-phase and quadrature (I/Q) signal sample input,
a control input, and a complex signal output;

at least one chip counter (GCC), each GCC having a
signal sample input in communication with the at least
one 1/Q signal sample input and further having a local
reference clock output;

a data path having at least one output, a first data path
input in communication with the PN code output and
the Walsh code output, a second data path input in
communication with the complex signal output, and
further having a third data path input;

at least one task buffer having an input and an output and
configured to store a list of programmably executable
tasks;

at least one configuration table buffer having a first output
and a second output, the first output in communication
with the at least one task buffer input, and further
having at least one input in communication with an
external system interface bus;

an interrupt generator having an input, a first output and
a second output, the second output in communication
with the external system interface bus;

at least one output data buffer having at least one input in
communication with the at least one data path output,
and further having at least one output in communica-
tion with the external system interface bus; and

10

15

20

25

30

35

40

40

a controller synchronized with the local reference clock
output and having a first output in communication with
the third data path input, a second output in commu-
nication with the PN code generator control input, the
Walsh code generator control input and the input buffer
control input, a third output in communication with the
interrupt generator input, a first input in communication
with the at least one task buffer output, and a second
input in communication with the at least one configu-
ration table second output.

27. The correlator co-processor (CCP) according to claim
26 wherein at least one output data buffer is a finger symbol
buffer.

28. The correlator co-processor (CCP) according to claim
27 wherein the finger symbol buffer comprises an external
communication bus interface output.

29. The correlator co-processor (CCP) according to claim
26 wherein the at least one output data buffer comprises at
least one buffer selected from the group consisting of
primary search code (PSC), delay profile estimation (DPE),
long code identifier (LCI), secondary search code (SSC),
finger max, early-ontime-late (EOL), and finger symbol
buffers.

30. The correlator co-processor (CCP) according to claim
26 wherein the data path comprises a plurality of multipliers,
a plurality of adder trees, at least one coherent accumulator,
a post-processing element, and temporary data storage ele-
ments such that the data path can perform predetermined
functions for a RAKE receiver.

31. The correlator co-processor (CCP) according to claim
30 wherein the predetermined functions are selected from
the group consisting of de-spreading tasks, early/late corre-
lations for time tracking, coherent accumulation of different
lengths, energy estimation, non-coherent accumulation, cor-
relations for delay profile estimation, and correlations for
search/acquisition functions.

32. The correlator co-processor (CCP) according to claim
26 wherein the external system interface bus is a RHEA
communication system bus.

33. The correlator co-processor (CCP) according to claim
26 wherein the external system interface bus is a EMIF
communication system bus.

#* #* #* #* #*

