ABSTRACT

A craft tracking and collision avoidance system is disclosed. The system allows the positions of a plurality of craft, either on land, sea, or air, or space, to be monitored. Each craft determines its own position using an existing position determining system such as LORAN or GPS. Each craft then transmits a radio frequency signal into which position information, preferably identifying information, and other messages, have been encoded. Each craft broadcasts its position, identifying information and other messages on a regular basis without the need for any interrogation signal. The broadcast position and identification information can be received by other craft and, since each craft has determined its own position, can be used to determine the proximity and identity of other craft, and if the craft are on a collision course. Preferably, the position of all the craft within a predetermined range of a craft is represented on a display in order to give the craft operator a visual indication of traffic surrounding his craft.

79 Claims, 14 Drawing Sheets
FIG. IA

1. **TRANSMIT LOOP**
 - 9

2. **OBTAIN A POSITION FIX OF OWN AIRCRAFT**
 - 10

3. **ENCODE THE POS. FIX ID CODE WHICH CAN BE CARRIED FIRST**
 - 12

4. **LISTEN FOR ANY CONFLICTING RADIO FRQ. SIGNAL**
 - 14

5. **IF SIGNAL HAS EXISTED & STOPPED WAIT RANDOM TIME**
 - 15

6. **TRANSMIT FIRST RADIO FRQ. SIGNAL CARRING POS. & ID OF OWN CRAFT**
 - 16

7. **DISPLAY OWN CRAFT & RELATIVE BEARING**
 - 17

8. **WAIT FOR TRANSMIT TIMER TO EXPIRE**
 - 19

FIG. IB

1. **RECEIVE LOOP**
 - 13

2. **RECEIVE ANY FRQ. SIGNALS FOR OTHER AIRCRAFT**
 - 18

3. **DECODE POS. & ID OF OTHER CRAFT**
 - 20

4. **DISPLAY POS. OF OTHER CRAFT RELATIVE TO OWN**
 - 21
UNIVERSAL DYNAMIC NAVIGATION, SURVEILLANCE, EMERGENCY LOCATION, AND COLLISION AVOIDANCE SYSTEM AND METHOD

A portion of the disclosure of this patent document contains material to which a claim of copyright protection is made. The copyright owner has no objection to the facsimile reproduction by any one of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but reserves all other rights in the copyrighted work.

BACKGROUND

1. The Field of the Invention

This invention relates to systems and methods for automatically announcing the position of one or more mobile craft to a receiver positioned at a remote location. More particularly, the present invention relates to systems and methods for tracking the positions of a plurality of mobile craft so as to provide assistance in navigation, surveillance, emergency location and collision avoidance.

2. The Prior Art

Throughout recorded history there has been an ever increasing need for more precise navigational aids. Through the years, the time keeping and position determining devices used for navigation have evolved from sun dials and sextants to sophisticated digital electronic systems capable of providing nearly pinpoint positioning accuracy almost anywhere in the world.

In today's transportation and communications environment, many devices exist that provide specific navigational aid to the operators of air, sea, and land craft. Navigational aids such as the Global Positioning Satellite system (GPS), the Long Range Navigation system (LORAN), and other navigational aids commonly referred to by such various acronyms as: VOR-DME, VOR-TACAN, DECCA, OMEGA, NDB, ILS, MLS, and ADF, are used by craft operators, particularly aircraft pilots, to determine the position of their craft in one, two, or three planes in space. For example, an operator of an aircraft may only desire to know the position of the craft above or below the surface of the earth (altitude or depth) or may desire to know only the position of the craft relative to a fixed terrestrial reference system (latitude and longitude) or the operator may desire to know the craft's position in all three planes in space.

One of the purposes of the various available navigational aids is to allow operators of craft, in particular air and water craft, to avoid collisions between their craft. As is well known, mid-air collisions of aircraft almost always result in disastrous loss of life and property. In an effort to avoid collisions between craft various systems have been implemented in the air and marine transportation industries.

In the United States, government agencies dealing with the air transportation industry have recognized a need to prevent mid-air collisions. In an effort to reduce the occurrence of mid-air collisions, U.S. government agencies have mandated that by the end of 1991 all commercial aircraft with thirty or more seats be equipped with collision avoidance equipment. Several types of collision avoidance equipment have been devised and are classified as either "active" or "passive" systems. These systems are commonly designated as Traffic Alert and Collision Avoidance Systems, also referred to as TCAS.

TCAS has been designed as a primary collision avoidance system for commercial aircraft and has received the United States Federal Aviation Administration's approval. An "active" TCAS system (TCAS II or III) provides the capability to interrogate other nearby transponder-equipped aircraft to elicit a responsive reply, while "passive" TCAS systems (TCAS I) simply eavesdrop on nearby interrogation replies from other transponders. In order to detect a "bearing," a TCAS system requires an expensive directional antenna.

The TCAS method is dependant upon either a secondary or beacon surveillance radar system, or other transponder (S) type interrogations in order to elicit a responsive reply. It is also transponder dependant, meaning that any aircraft not equipped with a transponder will not be detected, and any transponder not coupled to an altitude encoder will not deliver altitude information.

Recently, serious questions have been raised about how "safe" TCAS is in practice. TCAS operates in a narrow band of Air Traffic Control (ATC) radio frequencies in the microwave region of the spectrum. Thus, because of the number of interrogation requests and replies elicited, and the amount of information needed to be processed both TCAS and the ATC system may be "overwhelmed," and their operation sufficiently degraded to the point of "saturation," where the number of aircraft under the control of ATC exceeds the capacity of the system. Already, computer overloads and radar shutdowns have occurred at some busy locations. There is also the danger of a malfunction occurring, such as an item of interrogation equipment becoming stuck in the transmit mode, thereby "locking up" the entire system.

The high cost of the on board TCAS equipment makes its installation prohibitively expensive to most aircraft other than commercial aircraft. Moreover, TCAS III has not yet been fully developed. Even further, TCAS II and III are designed with the commercial aviation market in mind, but of the 215,926 active aircraft registered in the United States in 1988, the commercial aviation fleet only amounted to about three percent (3%) of the total. Thus, it is apparent that improved collision avoidance systems need to become more accessible to a much larger portion of the aviation industry, as well as to land and sea-based craft.

In view of these drawbacks and difficulties it would be an advance in the art to provide a complete traffic control system not requiring radar, and which provides a system and method for announcing the position of a craft to a remote receiver such that the position of the craft can be continuously monitored and collisions with other craft avoided. It would also be an advance in the art to provide a system and method for collision avoidance which may be used in addition to, and without interference with, preexisting collision avoidance systems and which can be economically implemented in the general aviation and marine industries so that, for example, with a single frequency select switch sea-going vessels could monitor air or land-based traffic and vice versa.

It would be a further advance in the art to provide a system and method which allows the operator of a first craft to monitor the position of a plurality of other craft within a predetermined range of the first craft and to alert the operator of a craft of a potential collision be-
between craft as early as possible. It would be yet another advance in the art to provide a system and method for announcing the position of craft to other craft which are within a predetermined range which is reliable, does not distract an operator of a craft from other duties, and provides short and long range navigational assistance to the operator of a craft.

It would be a still further advance in the art to provide a system and method of tracking the position of one or more craft within a predetermined range of a location anywhere on the earth such as at a remote airstrip, or beneath the surface of the ocean, or in space. It would be an even further advance in the art to provide a collision avoidance system which does not become saturated in areas of heavy traffic and which is capable of assisting with the landing or mooring of craft operating under poor visibility conditions. Still further, it would be an advance in the art to provide a system and method for tracking the position of a number of craft, for example a fleet of land craft which are carrying out tasks such as delivery of goods or people or other tasks.

BRIEF SUMMARY AND OBJECTS OF THE INVENTION

In view of the above described state of the art, the present invention seeks to realize the following objects and advantages.

It is a primary object of the present invention to announce the position of a craft to a remote receiver such that the position of the craft can be monitored and collisions with other craft avoided.

It is also an object of the present invention to provide a system and method for collision avoidance which may be used in addition to, and without interference with, preexisting collision avoidance systems.

It is a further object of the present invention to provide an emergency location system for distressed or disabled craft.

It is a still further object of the present invention to provide a collision avoidance system which is economically implemented in the general aviation or marine industries.

It is another object of the present invention to provide a system and method which allows the operator of a first craft to monitor the position of a plurality of other craft within a predetermined range of the first craft.

It is yet another object of the present invention to provide a system and method which will alert the operator of a craft of a potential collision as early as possible.

It is another object of the present invention to provide a system and method for announcing the position of any craft to other craft which are within a predetermined range which is reliable and does not distract an operator of a craft from other duties unless operator attention is necessary.

It is a further object of the present invention to provide a system and method for providing short and long range navigational assistance to the operator of a craft.

It is a still further object of the present invention to provide a system and method which allows the operator of a first craft to continually monitor the positions of a plurality of other craft within a predetermined range.

It is another object to the present invention to provide a system and method of tracking the position of one or more craft within a predetermined range of a location anywhere on the earth such as at a remote airstrip as long as one is operating within the constraints of primary navigation inputs.

It is another object of the present invention to provide a system and method for tracking the position of each of a plurality of craft which may be operated within an independent fleet of craft.

It is a further object of the present invention to provide a collision avoidance system which operates well in areas of heavy traffic.

It is still another object of the present invention to provide a system and method for assisting with the landing or mooring of craft under poor visibility conditions.

It is yet another object of the present invention to provide a system and method for collision avoidance which presents appropriate information to the operator of the craft in an easily comprehensible manner and which provides traffic alerts and resolution advisories.

It is another object of the present invention to allow a permanent record to be made of the movement of any craft within a predetermined range of a monitoring receiver.

Another object of the present invention is to provide a direct pilot-based system of traffic control and communications, and to provide a traffic control system and method which does not require radar and that will not interfere with other existing traffic control systems which are based on radar.

A further object of the present invention is to provide a comprehensive monitoring, tracking and communication system and method to promote inter-craft operational safety.

These and other objects and advantages of the invention will become more fully apparent from the description and claims which follow, or may be learned by the practice of the invention.

The present invention allows the position of a first craft to be monitored at a location remote from the craft. The position of the craft can be monitored at a stationary receiver or from on board another craft. Since a craft equipped with the present invention can monitor the position of other properly equipped craft, collisions therebetween can be avoided.

In the case where the present invention is fully implemented, i.e., all the craft in a fleet are equipped with embodiments of the present invention, all the craft are able to monitor the position of all other craft within a predetermined range. Moreover, each craft is able to accurately transmit its own position so the present invention is a great aid to navigation.

The present invention includes means, on board a first craft, for receiving or determining the position fix of the first craft. Any number of position-determining devices may be used. For example, the position of the first craft as may be obtained by using an altimeter or depth finder, the widely accepted LORAN navigation system, or GPS position determining techniques.

The position of the first craft is encoded, preferably as a digital signal, so that the position information of the first craft can be carried by a radio frequency signal. Preferably, both the craft position fix, craft identification code, and other relevant information such as radio frequency number, directory advisories, and equipment error flags are encoded so they can be carried by the radio frequency signal.

A large number of craft often operate within a limited range and may all transmit position information on the same radio frequency. In order to avoid interference
with conflicting radio frequency signals, it is preferred that conflicting signals are listened for prior to transmitting the radio frequency signal.

Importantly, the present invention does not require interrogation by a land-based, or other transmitter before position information will be transmitted by a craft. The radio frequency signal carrying the position information, and preferably other messages and identification information, is regularly transmitted on a continuous basis.

The radio frequency signal which is transmitted (carrying at least the position information for the craft) is received by another craft or a stationary monitoring receiver at a remote location. The received radio frequency signal is decoded to extract the craft position, identification and other information therefrom. Using the position information, the position of the other craft is displayed.

If the radio frequency signal is received on board another craft, the position of the first craft is of great help to the operators of that craft to navigate, communicate and especially to avoid possible collisions. In order to aid the operators of that craft, the relative positions of each craft are also determined and preferably displayed.

By displaying the positions of the two craft as the craft move, a heading for each of the craft can be derived and displayed and the possibility of a collision assessed. In accordance with the present invention, if a collision is possible between two craft on their present headings the operators of each craft are alerted so appropriate action can be taken. It will be appreciated that the greatest benefit from the present invention accrues when all craft have an embodiment of the present invention on board. When all the craft are so equipped, all of the craft can monitor the position of all other craft which are within a predetermined range.

Importantly, the present invention has applications other than providing collision avoidance advice. The present invention may be used as a navigational aid, for example, by automatically displaying the craft's position on a terrain map or graphically showing a landing approach. Moreover, with appropriate navigation information, the present invention may be implemented economically and some embodiments of the invention may be used anywhere in the world. Also, the embodiments of the present invention can be used to locate and direct precision emergency location and rescue efforts in the case of disabled craft.

Significantly, the present invention does not rely on interrogation by other craft to transmit its position fix. Rather, the radio frequency signal carrying the position information is transmitted regardless of the presence of any other craft or monitoring receiver. The strength of the radio frequency signal is limited so that it is received only within a predetermined range which is of interest. For example, the predetermined range of the radio frequency signal may be five, ten, thirty, or more miles. Moreover, rather than requiring a sophisticated radio direction finding antenna, the radio frequency signal of the present invention is preferably transmitted omnidirectionally so that all craft within the predetermined range will be able to extract the position information therefrom.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the manner in which the herein-recited and other advantages and objects of the invention are obtained can be appreciated, a more particular description of the invention briefly described above will be rendered by reference to a specific embodiment thereof which is illustrated in the appended drawings. Understanding that these drawings depict only a typical embodiment of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIGS. 1A-1B are high level flow charts describing the presently preferred steps carried out by the system described herein.

FIG. 2 depicts three aircraft as an example of the operating environment of the described embodiment of the present invention.

FIG. 3 is a block diagram showing the major functional components of the described embodiment.

FIGS. 4-11 through 4-11 provide a flow chart describing the steps carried out by the preferred embodiment of the apparatus of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Reference will now be made to the drawings wherein like structures will be provided with like reference designations.

1. General Discussion

As discussed above, the widely promoted and available collision avoidance systems, particularly those available to the aviation industry, inherently have several drawbacks. A major drawback is the fact that the cost of installing the necessary on board equipment may exceed the cost of an entire small aircraft. Thus, economic consideration prevents such systems as TCAS, from being adopted by the great majority of the general aviation industry.

Moreover, TCAS equipment requires complex on board computers in conjunction with radio direction finding equipment. Since TCAS equipped aircraft are capable of interrogating all other aircraft in close proximity, the result is that a large number of interrogations will occur in high density air space. Eventually, the radio transmission media will become saturated thereby rendering both TCAS and secondary surveillance radar inoperative.

Even when working optimally, the TCAS and other collision avoidace systems provide only a transponder code assignment for identification, gives only relative heading information and if properly equipped, altitude information. In addition, the entire system is interrogator dependent.

In contrast to the previously available collision avoidance systems, the present invention makes use of existing ground based or satellite based equipment which has already been widely accepted, rather than requiring new dedicated equipment. Moreover, the present invention provides navigational aid and emergency location functions not contemplated in previously available systems. Importantly, the collision avoidance, navigation aid, and emergency location functions are all provided economically and thus the necessary equipment can be installed on board even small privately owned aircraft. Still further, the present invention can be applied in space, air, land, and sea craft and provide collision avoidance, navigation, and emer-
gency location functions in nearly every environment, including IFR conditions.

The present invention is able to achieve its great advantages over the previously available systems by utilizing one of the existing position determining systems, or their equivalent, that is now available or currently being implemented. For example, using the LORAN system a craft, or in the case of portable LORAN receivers an individual, can immediately obtain a position fix measured in latitude and longitude, in many areas of the world. Also, the GPS scheme, when fully implemented, will allow a position fix measured in latitude, longitude, and altitude, to be determined anywhere in the world with great precision. These existing position determining systems, and others when available, are used by the present invention to provide advantages not heretofore available in the art.

The described presently preferred embodiment of the invention utilizes the LORAN position determining system. While one form or another of the LORAN system has been known for many years, especially in the marine environment, it has recently gained world-wide acceptance among many other types of craft operators, and particularly among aircraft operators. The LORAN system provides more useful navigational information than many other navigational instruments now in popular use, especially in the aviation environment. It has proven to be a highly reliable and safe system and has even been conditionally approved by the FAA for non-precision approaches to approved landing strips.

The precision of the LORAN system generally ranges from 60 to 600 feet depending on the location of the craft in relation to the geometry of several widely spaced low frequency radio transmitters which provide the necessary position fixing signals. Because of the precision and versatility of the LORAN system, LORAN receivers are available which include computers, databases and displays providing mapping and navigational aids to the operator of a craft as the craft travels. For example, LORAN equipment intended for aviation use is often provided with databases that are updated monthly to provide all current airport frequencies, runway orientation and length, airport elevations, VOR, restricted and prohibited flight areas, and other useful information.

Furthermore, some aviation LORAN receivers are able to immediately locate several of the nearest airports in times of emergency. LORAN equipment installed on aircraft is able to compute ground speed, wind direction and speed, tracking error, offering tracking and vertical navigation advisories, and report minimum safe altitudes and degrees of magnetic variation.

Excellent LORAN coverage is now available throughout most of North America. LORAN coverage is partially available in most other areas of the world including the North Atlantic, the United Kingdom, Europe, the Mediterranean Sea, North Africa, the Persian Gulf, Saudi Arabia, and Japan. The relatively low cost and high benefits of installing LORAN transmitters make the LORAN system attractive to governments of both industrialized and developing nations. Furthermore, upon its full implementation, the GPS scheme will provide even greater benefits. Since an existing position determining system is not available everywhere, the term "operational range" will be used to denote when a craft is in an area in which an existing position determining system can be effectively used.

Complete information concerning the LORAN system can be obtained from the publications Melton, L., "The Complete Loran-C Handbook" (Marine Publishing Co. 1986) and Sweeny, D. J., "Learning About Loran," "Radio-Electronics Magazine 50-58, 69 (May 1987) which are incorporated herein by reference. Likewise, the GPS scheme may also be used in accordance with the present invention. Further information concerning GPS can be obtained from the publications entitled "Introduction to Global Positioning," "Civil Engineering 16-20 (January/February 1987), Ashjaee, J., "Global Positioning System: Refined Processing for Better Accuracy," "Sea Technology 20, 22-25 (March 1986) and Enge, P. K. et al, "Differential Operation of the Global Positioning System," "26 IEEE Communications Magazine 48-60 (July 1988) which are incorporated herein by reference.

It will be appreciated that the present invention has application in many different circumstances. Thus, as used herein the term "craft" is intended to include any stationary object, any mobile animal or person, or any mobile apparatus or vehicle. For example, land, sea and air craft are specifically intended to fall within the meaning of the term "craft.

Also, as used herein, the term "monitoring receiver" means any device or apparatus invention which can monitor the position of a craft which is transmitting position information in accordance with the present invention.

The present invention comprises an apparatus and method for announcing the position of a craft to a monitoring receiver, either stationary or mobile, remotely located from the craft. In one application, the present invention can be used to track the position of one or more craft at a stationary receiver. In another application, the present invention can be used by one craft to track one or more other craft. With the present invention in place, as a first craft tracks all the other craft positioned within a predetermined range of the first craft, and the operator of the first craft is apprised of the position of all the other craft, collisions between the craft can be avoided.

The presently preferred embodiment of the invention which is described herein is intended to be used primarily in the aviation industry. Those familiar with the aviation industry will appreciate that the problems of collision avoidance are particularly troublesome in today's crowded airspace. Adding to the problem of collision avoidance in the aviation industry are: the limited operator's field of vision in an aircraft cockpit; the speeds of the craft on a collision course provide very little time for a pilot to react and take corrective action; and an aircraft on a collision course may come from any direction in space.

Also a universally useable or mandated collision avoidance system must be economically feasible for both small, modestly priced aircraft carrying just one or two persons and large multi-million dollar aircraft carrying hundreds of passengers and/or freight. Thus, at the current time, a most urgent need for the present invention lies within the aviation industry.

Nevertheless, the present invention can be used as a position announcing and/or collision avoidance system in other demanding situations such as with water craft. Also, the present invention can be applied where a dispatcher needs to track the movement of a plurality of vehicles in a fleet, for example, motor trucks as their movements are coordinated for making deliveries and-
or pickups, buses, trains, construction and other land based equipment.

2. Detailed Description in Reference to FIGS. 1-4

In order to describe the presently understood best mode for making and using the present invention, the presently preferred embodiment of the present invention, as intended to be used in an aircraft environment will be described. As will be appreciated, the application of the present invention to traffic monitoring and collision avoidance is one of, if not the most, demanding of the contemplated applications of the present invention because of, among other things, the speeds of the craft involved and the desirability to monitor three dimensional space as opposed to two dimensional space in the case of water and land craft.

Referring now to FIGS. 1A-1B, the preferred general method used by the system of the present invention will be explained.

As shown at 10 in FIG. 1A, the initial step of the transmit loop 9 is to obtain a position fix for one's own craft, also sometimes referred to as herein as a craft. The position fix is obtained using apparatus on board the craft. It is preferred that the position fix be obtained using an existing automated navigational system which will provide the position of the craft relative to a fixed reference, for example, latitude and longitude. This arrangement is in contrast to other collision avoidance systems which merely determine the distance between two craft and not their position relative to a fixed reference system. The LORAN system and the GPS system are among the preferred existing external automated navigational systems.

While navigational systems which are capable of providing a position fix in two dimensions (e.g., LORAN) or three dimensions (e.g., LORAN in combination with an altitude encoder or GPS) are preferred, in some applications of the present invention it may only be necessary to obtain a position fix in one dimension or plane of space. For example, in one application of the present invention, an operator of an aircraft may only need to know if another craft is operating at the same altitude. While such information is only a portion of that which the described embodiment of the present invention can provide, it is of use to alert the operator of an aircraft. If another aircraft is operating within a close range at the same altitude, an operator of the aircraft should be warned that a collision with another aircraft is possible if precautions are not taken.

Thus, the position fix can be obtained from an altimeter only (for a one dimensional position fix), from a LORAN receiver (for a two dimensional position fix), from both a LORAN receiver and an altimeter or a GPS device (for a three dimensional position fix). Other devices can also be used to obtain a position fix.

As indicated at step 12 in FIG. 1, the position fix which was obtained in step 10 is encoded so that it can be carried by a radio frequency signal. In addition to the position fix, an identification code (such as an aircraft registration number) and/or other messages are also encoded. It is preferred that the position fix and the identification code and other messages be digitally encoded so that they can be transmitted at a relatively high baud rate as will be described in detail below.

In the United States, the radio frequency allocation of 1.6 Gigahertz has been reserved for aviation use. Thus, it is presently preferred, but not required, to utilize the 1.6 Gigahertz frequency allocation. Since all aircraft utilizing the present invention preferably utilize the same frequency, step 14 provides that any conflicting radio frequency signals are listened for.

One of the significant advantages of the present invention is that, as opposed to previously available collision avoidance systems, a craft transmits its own position fix and identification code information without being interrogated.

Since many craft may be using the described embodiment of the present invention, all using just one or a few radio frequency allocations, avoidance of conflicting radio frequency signals is necessary. In use, some conflicts may occur in the described embodiment in areas where craft are highly concentrated. In the described embodiment, the position fix and identification code information is regularly and repeatedly transmitted. Thus, if an attempt at transmitting the position fix and identification code is postponed or "walked on" by another transmission, the information will be repeated in a short period of time.

One preferred arrangement for preventing interference between conflicting radio frequency signals is to first listen for conflicting signals, as at step 14, and if a conflicting signal has existed, then wait a random period of time after the detection of a conflicting radio frequency signal, as at step 15. The length of the random period of time can be, for example, derived from the registration number of the aircraft, a random generation, or some other means. Alternatively, after the detection of a conflicting radio frequency signal, a predetermined period of time may be waited before transmission.

Additional details concerning the settlement of a conflict between radio frequency signals can be devised by those skilled in the art and further information concerning the preferred example is provided later in this disclosure. It will be understood that various schemes, including the use of scanned multiple frequencies (speed spectrum technology), higher transmission rates, and other non-interrogation schemes, can be devised and used with the present invention.

At step 16 in FIG. 1, the radio frequency signal carrying the position fix and identification code information is transmitted and the pilot's own craft and relative bearing are displayed at step 17. The system then waits at step 19 for the transmit timer to expire, before re-entering the loop for another transmission.

Whether it is desired to avoid collisions between multiple craft or to track a single craft, it is nearly always desirable to have the radio frequency signal received only within a limited range. Thus, the radio frequency signal is of limited strength. For example, when functioning to avoid collisions between aircraft, the area of interest is generally a radius of between from about 1 to about 30 miles around one's own aircraft or around the airport. Nevertheless, in some cases, such as in the case of land or sea craft, the range of interest may be greater or lesser than that which is desirable for aircraft.

The radio frequency signal carrying the position fix, identification code information, and other messages, is of limited power so that only the radio frequency signal transmitted from craft within a predetermined range will be received. This reduces the number of radio frequency signals which conflict with one another, allowing a large number of aircraft to be simultaneously operating within a predetermined range. Other embodiments of the present invention can be fabricated which
allow a greater number of craft to be simultaneously operating within the predetermined range.

Preferably, the radio frequency signal from each of the aircraft is transmitted, and received, omnidirectionally. Since position information is encoded within the radio frequency signal, and not derived from the signal strength or direction, complicated antenna arrangements are not necessary with the present invention. As will be appreciated, in the case of aircraft, the term "omnidirectionally" is intended to include three planes of space while in the case of land or water craft, the term "omnidirectionally" generally need only include horizontal two dimensional planes surrounding the craft.

As indicated at step 18 of receive loop 13 in FIG. 1B, the radio frequency signals for other craft are transmitted and are received at a craft or another location which is equipped with a monitoring receiver in accordance with the present invention. The receiving location may be a ground location which is tracking one or more craft. The radio frequency signals are decoded, as indicated at step 20, and the position fix and identification code information is displayed at step 21.

Once the position information has been extracted from the radio frequency signals, the position of all the other craft within the predetermined range can be displayed as represented at step 21 in FIG. 1B. As each craft regularly transmits its own position, it is possible to calculate all relative essential elements of heading, speed and distance of each craft which can then be displaced. In the case of craft on a collision course, the projected point of impact and time of impact can be calculated and displayed while the operators of the craft are alerted to the danger and given appropriate advisories. While it is not always necessary, it is preferred that an identification code for each craft be transmitted. The transmission of a craft identification code and its current operating communication radio frequency simplifies the organization of incoming data and enhances safety by providing a craft identification for two-way radio communication.

Included in step 21 of displaying the position of all craft transmitting a radio frequency signal within the predetermined range is preferably the step of displaying the position of the other craft in the own craft's own craft. This allows the crew, or other craft, to issue a collision alert if a collision is possible between two craft on their present headings. Also, since, one's own position fix has already been determined, it is possible to display the position of one's own craft against a map superimposed on the display. Data to create such maps can be provided by databases as are available in the art.

Preferably, each of the craft may be provided with a recording device which will provide a non-volatile record of all position and identification information which is received, and if desired the position information of one's own craft. Thus, if an aircraft were to become disabled and go down, the radio frequency transmissions would continue to transmit the position and identification of the craft to be observed by other craft. If the apparatus did not survive a crash, any properly equipped craft within range recording all received position and identification information and the last transmitted radio frequency signal from the downed aircraft would provide precise information of the location information of the crash site. With either alternative, the present invention can be used as an emergency location system that will supply more precise information than that commonly available on the ELT (Emergency Location Transmitter) system in current use.

Referring next to FIG. 2, a primary aircraft 30 is represented at the center of a sphere 36. The sphere (which is not to scale) represents the predetermined range in which the radio frequency signal broadcast from the primary aircraft 30 can be received by other aircraft also carrying the system of the present invention. Thus, the operator of a second aircraft 32, being within the predetermined range, will receive a collision alert if the two craft are on a collision course. Alternatively, another secondary craft 34 will not be made aware of the position of the other two aircraft until it comes within the predetermined range represented by sphere 36. A ground based monitoring receiver 38 is also represented in FIG. 2. The ground based monitoring receiver can function as an air traffic control station as the craft come within range.

Referring next to FIG. 3, a block diagram of the presently preferred embodiment of the present invention is provided. The high level functional blocks include: a position determining block 100; an interface controller block 102; a radio frequency block 104; an antenna 106; and a control block 108. In most of the functional blocks, additional components are represented. The components represented in FIG. 3 are generally included on board a craft or can be located at a stationary location.

Represented within the position determining block 100 are a latitude/longitude position determining device 100A and an altitude determining device 100B. It will be appreciated that many aircraft already include appropriate latitude/longitude position determining devices and an altitude determining device and thus the components represented within the position determining block 100 may not be included in all embodiments of the present invention. It is one of the advantages of the present invention that the existing equipment already provided on many aircraft can be used in conjunction with embodiments of the present invention. In the case of a water or land craft, the inclusion of only a latitude/-longitude device is generally all that is necessary.

The presently preferred latitude/longitude position determining device is a LORAN-C receiver available from ARNAV, a subsidiary of Flight Dynamics, Inc., of Portland, Ore., and referred to as Model R-50. The described LORAN receiver provides many desirable features as well as the ability to communicate with other devices via the industry standard RS-232 communication protocol.

The presently preferred altitude determining device is an altimeter available from ACK Technologies, Inc. of San Jose, Calif., Model A-50. Information concerning interfacing the indicated altimeter to other components is available from the manufacturer.

The devices included in the position determining block 100 are a preferred example of a means for determining, on board a craft, the craft's position using an existing external navigation system. The means for determining the craft's position can include, depending upon the particular application of the invention, devices for determining the craft's position in one, two, or three dimensions (or phase) of space.

The present invention includes means for encoding the position of the craft, which can also preferably encode an identification code for the craft, so such information can be carried by a radio frequency signal. The presently preferred example of a means for encod-
The identification code may be an aircraft registration number or any other number unique to the craft. While it is not essential to encode and transmit the craft identification code with the radio frequency signal, it is desirable to do so.

Still referring to FIG. 3, the interface controller 102 communicates with the devices of the position determining block 100 by way of communication ports included in the devices. The presently preferred example of the interface controller 102 is a system available from Enduratek Corporation of Salt Lake City, Utah and referred to as the Data-V-Com system. Complete information concerning the Data-V-Com system can be obtained from the publication "Mobile Data Terminal System Operations Manual" available from Enduratek Corporation and which is incorporated herein by reference.

The interface controller 102 system performs data encoding and preparation functions needed to transmit the digital information via a radio frequency signal and functions as the presently preferred example of a means for encoding the position of the craft into information which can be carried by a first radio frequency signal and a means for decoding the other craft's position from a radio frequency signal. Other devices performing similar or equivalent functions are intended to be included within the scope of the means for encoding included within the present invention. The designated interface controller 102 also functions as the presently preferred example of a means for decoding the position and identification information received from other craft. The radio frequency block 104 includes a modulator 104A, a radio transmitter 104B, an antenna duplexer 104C, a radio receiver 104D, and a demodulator 104E. The components of the radio frequency block are preferably included in a radio frequency transceiver capable of operating in the microwave band containing 1.6 Gigahertz. One presently preferred transceiver which operates in the VHF band is available from Icom, Model No. IC-A20. It will be appreciated that devices other than the demodulated transceiver, and frequencies other than 1.6 Gigahertz, for example any appropriate radio frequency may be used within the scope of the present invention.

Also represented in FIG. 3 is an antenna 106, which may comprise one or more individual antennas or antenna elements, and which is preferably one that will provide an omnidirectional radiation pattern. It is desirable that the radiation pattern and the reception pattern both be omnidirectional. The antenna duplexer 104C serves to isolate the radio transmitter 104B from the radio receiver 104D while allowing both to use the same antenna.

Still referring to FIG. 3, a modulator 104A functions to modulate the carrier radio frequency wave with the craft position and identification information encoded by the interface controller 102. A demodulator 104E similarly functions to extract the position and identification information from any radio frequency signal which is received and to pass the same onto the interface controller 102. The modulator 104A and demodulator 104E may be embodied as a device commonly referred to as a modem, which is easily available in the art.

The components represented within the radio block 104 and the antenna 106 are the presently preferred example of a means for transmitting the first radio frequency signal and a means for receiving a radio frequency signal. The interface controller 102 communicates with, and operates, the components of the radio frequency block 104 by way of connectors and cables customarily included on radio frequency transceivers as will be understood by those skilled in the pertinent art. The interface controller 102 represented in FIG. 3 also communicates with a computer 108A which is included in the components of the control block 108. The computer 108 is preferably one which is equivalent to an IBM model PC AT. One of the many commercially available portable models (generally referred to as "Lap Tops") of the specified equivalent computer can also be used. The computer 108A and the interface controller 102 communicate with each other by way of the customary connectors and protocols (such as the RS-232 protocol) which are well known to those skilled in the art.

The programming code which is presently preferred for use with the interface controller 102 is attached hereto as Appendix A. The programming code which is presently preferred for use with the computer 108A is attached hereto as Appendix B. Included in the block 108 is a display 108B. The display 108B may be integral with the computer 108A or may be separate therefrom. The display is preferably used to provide a graphical representation of the position of the craft which are within the predetermined range of the monitoring craft or receiver. Thus, the operator of the craft can observe on the display the position of both his own craft (desirably in the center of the display) and the position of all other craft surrounding his craft within the predetermined range.

One preferred embodiment of the display would incorporate the use of a head-up display to display not only collision avoidance information, but also to aid in proximity reporting, navigation under IFR conditions, coordinated descent into controlled and uncontrolled airports and landing strips, and other relevant information, and to project these pertinent images in a forward view mode into the wind screen and line of the actual and preferred flight path.

It will be appreciated that some embodiments of the present invention may provide additional benefits if the display is one which not only provides high resolution in two dimensions, but one which is also suitable for displaying three dimensions, i.e., a display wherein depth can be represented by either using a three dimensional graphics mode or by decreasing intensity as a position recedes from the viewer and greater intensity as the position moves toward the viewer. Altitude information as well as indicators showing whether or not aircraft are climbing or descending can also be depicted on the display.

In the case of the present invention as applied to the aviation industry, it is desirable that the position of aircraft other than those in the same horizontal plane be displayed. Namely, the display 108B should provide position information of a plurality aircraft vertically displaced from the monitoring craft (i.e., differing altitude) as well as in the same horizontal plane (latitude and longitude). Depending upon the particular embodiment of the invention, the display 108B, or all of the components represented in radio block 108, function as a means for displaying a craft's position as defined by the present invention. Other devices and arrangements performing similar or identical functions are intended to be considered equivalent to the described structures.
Also represented in the control block 108 are input devices 108C. Input devices 108C can include a keyboard (which may be integral with the computer 108A) or other general purpose or dedicated input devices. An audio/visual alarm 108D is also represented in control block 108. The audio/visual alarm can be integral with the computer 108A or can be one of several dedicated alarm devices intended to apprise the operator of a craft of a potential collision or other situation requiring attention.

A recorder 108E is also provided in the control block 108 to make a non-volatile recording of selected data received by the computer 108A. Preferably, the recorder 108E is used to periodically log the position of all craft within the predetermined range. Thus, if a monitored craft becomes disabled and stops transmitting its radio frequency signal carrying position information, the last recorded position fix logged in the recorder 108E of any craft or observation station within the predetermined range can aid in the location of a disabled craft.

Furthermore, if a craft continues to transmit its radio frequency signal with its own position fix after becoming disabled, it will function as an emergency location device and will assist search and rescue crews in the rapid location of the disabled craft. In some embodiments of the invention, the radio frequency signal can carry, in addition to position and identification information, a distress signal as well as other messages to indicate a need for emergency assistance and even describe what type of emergency assistance is required at the disabled craft.

If desired, the components of the control block 108, the interface block 102, and the reception components of the radio frequency block 104 can be used as a monitoring receiver. For example, a monitoring receiver can be used as a ground control station to monitor the air space surrounding an airport. In the case of small airstrips or airports in developing areas, the present invention can be adapted to provide both airborne craft and ground control personnel the information necessary to coordinate air traffic. This application of the embodiment of the invention would allow for the system's use as a standard ATC system exclusive of expensive radar installations, and at extremely low cost.

It will be appreciated that while the described embodiment is the presently best known mode for carrying out the invention, those skilled in the pertinent art will understand that other components may be used to carry out the invention. For example, the functional blocks illustrated in FIG. 3 may be combined into a few, or just one, devices housed in a single enclosure. Moreover, as the art progresses, the inventive concepts of the present invention may be embodied in devices not yet available but carrying out functions equivalent to those described in connection with the preferred embodiment. All such alternative embodiments of the invention are intended to fall within the scope of the present invention.

Provided in FIGS. 4-1 through 4-11 is a more detailed flow chart describing the steps carried out by the above-described embodiment. In these figures, the boxed letter designations indicate the interconnections between the portions of the flow chart which are divided between figures.

The flow chart provides a description of the high-level functions carried out principally by the interface controller 102 represented in FIG. 3. In the presently preferred embodiment of the present invention, the interface controller 102 is implemented by the above-described Data-V-Com system. Also, as indicated earlier, the presently preferred programming code for the Data-V-Com system is included in Appendix A attached hereto.

It will be appreciated that the flow chart represented in FIGS. 4-1 through 4-11 represents just one preferred example of the programming steps that can be used to carry out the present invention and those skilled in the art will be able to devise other embodiments of the present invention using the teaching contained herein. Also, as will be appreciated after an examination of FIGS. 4-1 through 4-11, the Lap Top (a portable computer which functions as the computer 108A represented in FIG. 3) functions principally to display the data presented to it by other components and to provide input and output functions with a human user. The text contained in the dashed boxes are included to improve the clarity of the flow chart and do not represent steps in the method.

Also, as indicated earlier, the presently preferred programming code for the Lap Top is included in Appendix B attached hereto. Those skilled in the art will be able to provide embodiments of the present invention which perform functions similar or equivalent to those performed by the described embodiment, using the teachings contained herein.

The flow chart contained in FIGS. 4-1 through 4-11 is divided into several principal routines as indicated below.

<table>
<thead>
<tr>
<th>Flow Chart Routine</th>
<th>FIG. NOS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>FIGS. 4-1 through 4-4</td>
</tr>
<tr>
<td>Radio</td>
<td>FIGS. 4-5 through 4-6</td>
</tr>
<tr>
<td>Loran</td>
<td>FIG. 4-7</td>
</tr>
<tr>
<td>Altimeter</td>
<td>FIG. 4-8</td>
</tr>
<tr>
<td>Lap Top</td>
<td>FIGS. 4-9 through 4-11</td>
</tr>
</tbody>
</table>

Further information concerning each of the routines indicated above is provided in the Glossaries set forth below.

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>START</td>
<td>This is the beginning of the program. When the micro-processor is reset via hardware or software it is vectored to this point. At START, the Stack Pointers, Interrupt disabling and various other Housekeeping chores are performed.</td>
</tr>
<tr>
<td>202</td>
<td>SELFTEST</td>
<td>This is the beginning of the Selftest Module. At this point the Diagnostic Terminal will display that Selftest has started. Also at this point Selftest Interupts will be set up and enabled.</td>
</tr>
<tr>
<td>206</td>
<td>RAM TEST PASS</td>
<td>The RAM (Random Access Memory) test is run. The RAM test writes data found in a ROM table to each RAM address. If the same data that was written is read back, the program continues through the table until the data 00H is written. This signifies the end of the test and leaves all RAM cleared and ready for use. If the test fails at any point the data read, data written and the address are saved and reported back to the Diagnostic Terminal. The RAM should be replaced at the address reported if failure occurs.</td>
</tr>
<tr>
<td>208</td>
<td>SET RAM</td>
<td>The Selftest Status is sent to the Lap</td>
</tr>
</tbody>
</table>
210 ROM TEST PASS
 All Used ROM (Read Only Memory) is added and the sum must equal zero. The Check Sum Adjut Byte at 3F7FH ensures that the sum (without carry) is zero. If the sum is not zero the test fails and ROM should be replaced. The test failure status and the erroneous check sum are reported to the Diagnostic Terminal.

212 SET ROM TEST FAIL BIT
 The Selftest Status is sent to the Lap Top and to other Aircraft via the Radio. If this bit is set it means that the ROM Test Failed and all data is unreliable.

214 LAP TOP INTER. PASS
 The USART (Universal Synchronous Asynchronous Receive Transmit) 8051 is Software reset and the MIF (Mode Instruction Format) set up. Status is then checked and verified.

216 SET LAP TOP INTERFACE FAIL BIT
 The Selftest Status is sent to the Lap Top and to other Aircraft via the Radio. If this bit is set it means that the Lap Top Communication could be unreliable.

218 I/O TEST PASS
 The PIA (Peripheral Interface Adapter) 8155 is initialized for the proper mode, which ports are Inputs and which are outputs and the baud rate Clock set up. Outputs are initialized. Status is then checked and verified.

220 SET INPUT/OUTPUT FAIL BIT
 The Selftest Status is sent to the Lap Top and to other Aircraft via the Radio. If this bit is set it means that the PIA is unreliable. The PIA interfaces mainly with the Altimeter.

222 RADIO INTER PASS
 The USART (Universal Synchronous Asynchronous Receive Transmit) 8051 is Software reset and the MIF (Mode Instruction Format) set up. Status is then checked and verified.

224 SET RADIO INTERFACE FAIL BIT
 The Selftest Status is sent to the Lap Top and to other Aircraft via the Radio. If this bit is set it means that the Radio Communication could be unreliable.

226 ADD AIRCRAFT ID
 Each System has its own Aircraft Identification Via the Diagnostic Terminal the Aircraft Identification is put in NonVolatile Memory or EEPROM. (Electrically Erasable Read Only Memory). This Identification number will not be lost if the system is reset or powered down. When Selftest is run the system can sense that the Terminal is attached and allow the user the option of changing the Aircraft Identification. This block asks the question, Do You Want to Enter Aircraft Identification?

228 GET AIRCRAFT ID
 This block Prompts the Terminal, for the Identification, Error Checks it and buffers it.

230 ENTER AIRCRAFT ID
 This block enters the buffered aircraft Identification into EEPROM.

232 PUT IN RANDOM XMIT TIMER
 Because the preferred embodiment of the present invention is polite (will not transmit when another signal is already present on the frequency), To eliminate various systems transmitting simultaneously, each system will have different wait times before transmitting after a frequency has cleared. This random wait time is determined by the system Aircraft Identification in the preferred embodiment.

234 TOGGLE PRINTER STAT.
 Changes the printer status.

236 CHG PRINTER STAT
 To enable someone to monitor the entire system there is a port for a printer or some other type of monitor. At this time the Diagnostic Terminal can be used for changing the Status of the Printer or Monitor. The Status is kept in NonVolatile ROM or EEPROM so that if the System is powered down or reset that status will not change. Pointers such as the Input and Output Pointers for the Rotating buffers used for the Lap Top Interface are set up at this time.

240 INITIALIZATION
 At this point in the Program it is not known if the Altimeter is functional or not, especially since the Altimeter does not function for several minutes after it is powered up. So that any data present is not mistaken for good Altimeter Data all 9's are inserted in the Altimeter use area.

244 SET LORAN DATA TO 9's
 At this point in the Program it is not known if the Loran Receiver is functional or not, especially since the Loran Receiver must be initialized manually to send the proper information at the proper baud rate, transmit rate, and so forth. To ensure that any random data already present is not mistaken for good data, all 9's are inserted in the Loran Longitude and Latitude buffers.

246 SET # MESSAGE FLAG
 The # message Flag is set so that when the system is fully initialized and functional, the # message will be sent to the Lap Top Computer. This is the exit point for initialization that has been performed heretofore and the loop point for the rest of the program. When the rest of the program has completed it will come back to this point and begin again at this point.

250 EXECUT
 The Radio Module (See step 276, FIG. 4.5) is interfaced at this point. The Loran Module (See step 312, FIG. 4.7) is interfaced at this point. The Lap Top Computer Module (See step 348, FIG. 4.9) is interfaced at this point. See step 266.

252 CALL RADIO
 If the system is transmitting the watch dog timer is not reset. This helps to ensure that the system does not transmit for too long a period. If the watch dog is not reset every 1.1 seconds the system is reset, the Program Counter goes to 0000H or the Start.

266 CALL ALTIMETER TRANSMITTING
 The Altimeter Module is interfaced at this point.

268 CALL ALTIMETER
 B. Radio Routine Glossary.

272 RANDOM TIMER EXP
 After the frequency has busy this timer must expire before transmitting. (See step 232 (FIG. 4.2) and 278 (FIG. 4.5).

274 'T' RELOAD VALUE NON 0
 This is the entrance to the RADIO module. This module handles all the communication to/from the Radio. All communication to other aircraft is via
<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>278</td>
<td>RESET XMIT TIMER</td>
<td>The value used to reset the XMIT timer is the value obtained from the "T" message from the Lap Top Computer. (See steps 274 (FIG. 4-5), 350 (FIG. 4-9) & 376 (FIG. 4-10).)</td>
</tr>
<tr>
<td>280</td>
<td>CHANNEL CLEAR</td>
<td>Because the system is polite (See step 232 (FIG. 4-23)), it will not transmit unless the channel is clear. The Carrier Active Sense (CAS) is checked at this point to see if the frequency is clear or not.</td>
</tr>
<tr>
<td>282</td>
<td>XMIT TIMER EXP</td>
<td>The location message for this aircraft must be transmitted to the aircraft at a rate determined via a "T" message from the Lap Top Computer. If the "T" message time is 0 (which is what is initial) then the message is not transmitted at all.</td>
</tr>
<tr>
<td>286</td>
<td>GET THIS AIRCRAFT ID</td>
<td>The Aircraft Identification is read from EEPROM and stored in the Radio Transmitter buffer. (See steps 230, 228 (FIG. 4-22) & 226).</td>
</tr>
<tr>
<td>290</td>
<td>RESET RANDOM TIMER</td>
<td>The Random timer must be reset with the value determined from the Aircraft Identification. (See steps 232 (FIG. 4-22) & 430 (FIG. 4-11)).</td>
</tr>
<tr>
<td>292</td>
<td>GET LORAN LAT. LON. DATA</td>
<td>The most recent data from the Loran Receiver is placed in the transmit buffer. (See steps 292 (FIG. 4-46), 314 & 320 (FIG. 4-71)).</td>
</tr>
<tr>
<td>296</td>
<td>MESSAGE RECEIVED?</td>
<td>By examining the input buffer it can be determined if a message has been received.</td>
</tr>
<tr>
<td>298</td>
<td>CHECK SUM CORRECT</td>
<td>Each byte of the message is added w/carrier and it is determined if the message is error free or not.</td>
</tr>
<tr>
<td>300</td>
<td>PUT MESSAGE IN LAP TOP BUFFER</td>
<td>The message received above is rebuffed into the large rotating Lap Top Computer Buffer for transmittal to the Lap Top Computer.</td>
</tr>
<tr>
<td>302</td>
<td>GET LORAN STATUS</td>
<td>This byte indicates the Loran Status. (See step 330 (FIG. 4-71)). The Loran Receiver receives in addition to the Latitude and Longitude the Status of the Receiver.</td>
</tr>
<tr>
<td>304</td>
<td>SET LAPTOP MESSAGE READY FLAG</td>
<td>This flag tells the Lap Top Module that a message is ready to go to the Lap Top Computer.</td>
</tr>
<tr>
<td>306</td>
<td>GET DATA V-COM STATUS</td>
<td>The Data-V-Com Status includes not only the Serial status, (See steps 208, 212, 216, 220 & 224 (FIGS. 4-1 & 4-2)) but also status as to how current the Loran Information is.</td>
</tr>
<tr>
<td>308</td>
<td>GET MESSAGE CHECKSUM</td>
<td>After concluding with step 306 (FIG. 4-6) the message is formatted and the checksum is calculated by adding up each byte (w/carrier).</td>
</tr>
<tr>
<td>310</td>
<td>OUTPUT MESSAGE</td>
<td>The message formatted above is output (AFSK) via the UPSART. An attack delay (a period of no data to enable the transmitter to stabilize) as well as a time delay at the end is necessary.</td>
</tr>
<tr>
<td>312</td>
<td>LORAN</td>
<td>This is the Entrance Point for the Loran Module. This module handles the interface with the Loran receiver. Besides receiving the Latitude and Longitude it also saves the Loran Status and keeps track of if an update occurs between Message transmissions to other aircraft and to the Lap Top.</td>
</tr>
<tr>
<td>314</td>
<td>SAVE LATITUDE</td>
<td>The Latitude less the spaces is saved. (See step 318 (FIG. 4-71)). A flag is set so that it can be determined that</td>
</tr>
<tr>
<td>318</td>
<td>MESSAGE COMING IN?</td>
<td>The entire message from the Loran Receiver is not saved. If a message is not coming in the program looks for LAT for Latitude and LON for longitude and SD for Loran Status. If these labels are found the data less the spaces is saved.</td>
</tr>
<tr>
<td>320</td>
<td>SAVE STATUS</td>
<td>The Loran Status is saved for transmission to other Aircraft, as well as the Lap Top Computer. This makes it possible to know the accuracy of the Loran as well as other pertinent information. (See steps 388 (FIG. 4-11) & 302 (FIG. 4-6)).</td>
</tr>
<tr>
<td>322</td>
<td>LONGITUDE ?</td>
<td>Checks for LON (See step 318 (FIG. 4-71)) in message coming in from Loran Receiver.</td>
</tr>
<tr>
<td>324</td>
<td>ALL DATA RECEIVED?</td>
<td>See step 318.</td>
</tr>
<tr>
<td>326</td>
<td>PUT LAT. IN LAPTOP BUFFER</td>
<td>The message received above is rebuffed into the large rotating Lap Top Computer Buffer for transmittal to the Lap Top Computer.</td>
</tr>
<tr>
<td>330</td>
<td>SAVE STATUS LORAN STATUS?</td>
<td>A flag is set for each of the 11 different states of status if that particular status is read from the Loran Receiver.</td>
</tr>
<tr>
<td>334</td>
<td>PUT LON. IN LAPTOP BUFFER</td>
<td>See step 326.</td>
</tr>
<tr>
<td>336</td>
<td>PUT LORAN STATUS IN LAPTOP BUFFER</td>
<td>See step 332.</td>
</tr>
<tr>
<td>338</td>
<td>ALTIMETER</td>
<td>This is the Entrance Point to the Altimeter handler. It reads the 11 Discrete inputs and decodes the data to an ASCII altitude. If the altitude is bad a 998 is output. Reads the 11 Discrete inputs from the Altimeter. If some are not used the program is modified so that they are assumed to be the most significant and low. A look up table is used to decode the 11 inputs to a 3 digit altitude reflecting 100's of feet. If the table reflects 998 then the data is deemed to be bad and is rejected.</td>
</tr>
<tr>
<td>340</td>
<td>GET DISCRETE INPUTS (11)</td>
<td>The data is deemed good and saved for messages to the Lap Top and to other Aircraft.</td>
</tr>
<tr>
<td>342</td>
<td>GET ALT. FROM TABLE</td>
<td>A look up table is used to decode the 11 inputs to a 3 digit altitude reflecting 100's of feet. If the table reflects 998 then the data is deemed to be bad and is rejected.</td>
</tr>
<tr>
<td>344</td>
<td>INPUT DATA IN TABLE</td>
<td>The data in the table was bad, so instead of unreadable data a '998' is used to reflect the error.</td>
</tr>
<tr>
<td>348</td>
<td>LAPTOP</td>
<td>This is the input to the module. This module handles all communication to/from the Lap Top Computer. Put the "#" in the output buffer for this particular message to the Lap Top.</td>
</tr>
<tr>
<td>350</td>
<td>PUT '#' IN MESSAGE</td>
<td>See step 354 (FIG. 4-9).</td>
</tr>
<tr>
<td>352</td>
<td>CLEAR '#' FLAG</td>
<td>This flag indicates that a Message must be sent to the Lap Top Computer. This flag is set only during Initialization. (See step 246 (FIG. 4-33)).</td>
</tr>
</tbody>
</table>
| 354 | SET? | The Aircraft Identification in Nonvolatile memory (EEPROM), is put
3. Summary

In view of the foregoing, it will be appreciated that the present invention provides a system and method for announcing the position of a craft to a remote receiver such that the position of the craft can be continuously monitored and collisions with other craft avoided. The present invention also provides a system and method for collision avoidance which may be used in addition to, and without interference with, preexisting collision avoidance systems.

It will be further appreciated that the present invention also provides an emergency location system for distressed or disabled craft and a collision avoidance system which can be economically implemented in the general aviation industry. Still further, the present invention provides a system and method which allows the operator of a first craft to monitor the position of a plurality of other craft within a predetermined range of the first craft and to be alerted of a potential collision as early as possible.

The present invention also provides a system and method of monitoring craft proximity spacing, a critical function, while operating within the flight sector system in high density areas and while transiting or making approaches in VFR and IFR controlled airspace. Further, the system and method provide a similar function in the marine environment, particularly under adverse weather conditions and high density mooring or docking maneuvers.

Even further, after consideration of the foregoing, it will be understood that the present invention provides a system and method for announcing the position of any craft to other craft which are within a predetermined range which is reliable and which does not distract an operator of a craft from other duties unless operator attention is necessary. Moreover, the operator of a first craft is allowed to continually monitor the positions of a plurality of other craft within a predetermined range.

Even further, the present invention provides a system and method of tracking the position of one or more craft within a predetermined range of a location anywhere on the earth such as at a remote airstrip or allows the position of each of a plurality of craft belonging to a fleet to be tracked. Still further, the present invention provides a collision avoidance system which does not become saturated in areas of dense traffic and which readily makes a permanent record of the movement of any craft within a predetermined range of a monitoring receiver.

The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiment is to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
United States Patent Application
of
Edward J. Fraughton
and
Philip H. Berger
for
A UNIVERSAL DYNAMIC NAVIGATION,
SURVEILLANCE, EMERGENCY LOCATION, AND
COLLISION AVOIDANCE SYSTEM AND METHOD

APPENDIX A
PROGRAMMING CODE

Copyright 1990 ENDURATEK CORPORATION
Some of the descriptions in this document are operational and others are only organizational. The operational and other more important descriptions are highlighted in bold.

The following is a module by module description for the ACAS firmware for the Data-V-Com. Also included are all global buffers and flags for each module and how each will interface. Rotating buffers are used only where so stated (for output functions only). Where rotating buffers are used if, the input and output pointers are made equal while outputting the interrupts are disabled. The Global Flags and Buffers, RDUTLB/F, LRVTLB/F, LITTDV/F and LRTRDB/F will function in the following manner. The module sending the message will set the flag, all 8 bits to 1's, and fill the buffer. Two modules will receive each message, one of which is the Printer module. The printer module will clear the LSB and the other module will clear the MSB when it receives the message. The module transmitting the message will wait till only the MSB is cleared before it will send another message. The LSB is only to tell the Printer module that it has received the message. The buffers and flags are described in the Section PRNHN.SRC.

INITIAL.SRC This module is the Initialization module. This module will be vectored to on power up. It will initialize stack pointers, set interrupt vectors etc. and then call the selftest module SLPTST.SRC. When selftest has completed, this module will enable interrupts, set interrupt priorities etc. The names for the initialization routines for each of the following modules that needs one will be the same as the first three letters with a INL at the end, such as ITIIIINL. Selftest will call some of the initialization routines, this module will call the others. This module will also house the interrupt vectors for the modules requiring interrupts. The final act of this module will be to jump to the Executive loop EXECLP.SRC.

SLPTST.SRC Selftest will be called by the Initialization Routine. It is the only other routine other than the Executive Loop that will be allowed to reset the Watchdog timer. Selftest is the only other module other than the Executive and Initialization that will be allowed to call other modules. The following selftests will be performed:

1. EPROM Check Sum Test. All EPROM must add up to a predetermined value or this test will fail.

2. RAM Checkerboard Test. Patterns of all 1's, all 0's and alternating 1's and 0's will be written to each RAM address. After all addresses have been written with the pattern, each is read. If the correct data is not read this test will fail.

3. Peripheral Interface Adapter Test. Status Check only, there are at present no provisions for a wraparound self test.

4. USART Test. Status Check only on all used USARTS, there are at present no provisions for a wraparound self test.

This module will sense if a terminal is attached. If a terminal is attached it will give the operator the option of bypassing or running the test that failed. Each time a test fails, failure data, such as the address and bit pattern for the failure will be displayed on the terminal. When a terminal is attached it will also handle operator input for the following functions:

1. See if Operator wants to exit Selftest and continue with no changes.

2. See if the Operator wants to change the Primary Aircraft Id.

3. See if Operator wants to change the transmission delay time. (TTNTIM see the Radio module for details) This should be slightly different for each aircraft.
4. If the Diagnostic function is enabled at assembly time the operator, can also turn on this function. (See below) If this function is turned on it will be turned off the next time the system is reset either by the Lap Top Computer or a power reset.

5. If the Printer function is enabled at assembly time the operator can also toggle this function off or on. This toggle will be in nonvolatile EEPROM so that resetting does not change it.

EXECLEP.SRC This is the Executive module and will call all the other modules except as noted above. After Selftest and Initialization are complete, this is the only module that will be allowed to call other modules, except of course for INITAL.SRC.

A second function of the Executive module is to declare global all Buffers, Flags etc. that are used by more than one module. Also any parameters that may need to be changed, such as memory limits etc. will be in the Executive. This does not include timers used only in one module. They will be declared global in the timer module and used in one other module.

Although the code for the Executive is minimal it will be most likely be the largest module.

Because this module is only a loop for calling the other modules, it will reset the watch dog timer, but only after calling all the other modules. If the radio module is transmitting (MESINF flag), or if the computer module has received a reset message (NMDBST flag), the watchdog will not be reset.

ITIMER.SRC The timer routine after initialization will be interrupt driven. This module will be in two parts as shown:

A. ITIINT Label called by interrupt from the Initialization module.

B. ITIINL Initialization part of module called from the Initialization module.

The user will set the timer location with a value and then the timer module will decrement it until it is zero. It will be the function of the user module to monitor the timer to see when it expires. There will be three groups of timers, those that are decremented every 1/4 sec., 1 sec. and every minute.

The rest of the modules will only be called from the Executive loop.

PRNHAN.SRC This module can be enabled or disabled at assembly time. There will be a flag that can be set or cleared when the system is assembled and linked that will enable or disable this module. If disabled the USART will be turned off and the module will be disabled. Also to activate this module it will be necessary to set a non-volatile EEPROM location to an ASCII P. This can be performed during Selftest but only when a Diagnostic Terminal is attached. See Selftest for toggling this function. The parts of this module are as follows:

A. PRNHAN Called by the Executive from the main loop. This module will monitor communication between the Data-V-Com and the radio, between the Data-V-Com and the Lap Top Computer as well as between the Loran Receiver and the Data-V-Com. This will check flags to see if a message needs to go out to the printer/terminal that it handles. This function will be rebuffed to the rotating buffer and add the characters for where the message is from/to as shown below.

B. PRNITL This is the initialization for this module called by Selftest.
C. PRINT This is the interrupt driver for this module for outputting data to the printer/terminal. The transmit function will have a 500 character rotating buffer. If the buffer should become full it will not inhibit the transmission of information, but will print out Printer Buffer Full, clear just this buffer and then start over.

Each message will be on a single line with. At the end of the line there will be a space then the following to designate where the message is going or where it came from. Also included will be the message global buffers and flags. When this module reads the following Buffer it will clear the LSB (Least Sig. Byte) of the following flags:

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Flag</th>
<th>Printer Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDTLTB</td>
<td>RDTLTF</td>
<td>RDTLT</td>
</tr>
<tr>
<td>LRTLTB</td>
<td>LRTLTF</td>
<td>LRTLT</td>
</tr>
<tr>
<td>LITDVB</td>
<td>LITDVF</td>
<td>LITDV</td>
</tr>
<tr>
<td>LRTRDB</td>
<td>LRTRDF</td>
<td>LRTRD</td>
</tr>
</tbody>
</table>

This module will be the last one that is written except for the Diagnostic module (DIAGNT.SRC) and any or all of the above may be left out if time is short.

DIAGNT.SRC This module is also for trouble shooting as is PRN9N.SRC above. This module will not need initialization and will have no interrupt vectors. The handle used by the Executive to call this module will be DIAGNT. The terminal used will be the Selftest Terminal when attached. If not attached this function will be disabled. While the system is up and running this module will make it possible to do the following:

A. Read/Write Memory.
B. Read Code.

A volatile memory location in RAM must have an ASCII D for this module to function. It can also be inhibited during assembly and linking. This module when activated will seriously impede the processor since the software programmed serial interface must disable all interrupts when functioning. No interrupt handlers are needed for this module. This module will be the last one written and will be left out if time is short.

LAPN.SRC This module is the Lap Top Computer Handler (Computer Module). This module is divided up as shown:

A. LAPHAN This is the main part of the module that will be called from the Executive Loop. On power up it will send the $ message which includes the aircraft id in EEPROM and the Selftest Information (60 All passed) to the Lap Top Computer. The interface to the rest of the modules will be with the Global Buffers and Flags defined above for the printer module.

B. LPRMN This is the receive interrupt handler. After the first character is received, the rest of the message. which is terminated with a Carriage Return, will have 1 second to be received, before it is aborted and the pointer reset to the beginning of the buffer. It is not anticipated that the Lap Top Computer will send messages closer than 1 second apart, because it must receive a response, before it sends the next message. If a Reset message is received it will set the NNDRST flag, which will cause the system to be reset. (See the Executive section) If a 'T' message is received the next two digits will be converted to HEX and stored in the buffer.
VTMCNT. This will be the number of times that the Loran Receiver will send information before the info will be sent to the Radio and the Lap Top Computer. The only other module that will need to read the messages coming in, is the printer module.

C. LAPTIN This is the transmit interrupt handler. Messages going to the Lap Top Computer will be put in a 500 character rotating buffer. This means that approximately 20 messages could be buffered up from the Radio and Loran Modules. Each time called this module will monitor the appropriate flags. If a flag is set it will transfer the appropriate message to the rotating buffer.

D. LAPINL This is the initialization routine for the module. It will set the RSTMSG flag that will cause LAPHAN to send the $ or reset message when called.

RADHAN.SRC The radio module will transmit and receive messages over the radio. This module will be four parts as shown:

A. RADHAN This module will be polite and wait for the frequency to clear before transmitting. If it must wait longer that 10 sec., the message will be blurted out even if the channel is busy. If the channel clears before the 10 sec. has expired, it will not transmit immediately, because there may be other systems waiting also. Instead it will wait for a period of time determined by reading Nonvolatile EEPROM (TRNTIM). It is suggested that the first unit have a 01 for this value the next a 02 and so on till a max. is reached. Each tick will be 1/4 second.

B. RADINL Initialization called by Selftest.

C. RADRIN Receive interrupt handler from the Radio. Messages received will go only to the Printer and Computer modules as explained above.

D. RADTIN Transmit interrupt handler to the Radio. These messages will come only from the Loran handler module.

LORHAN.SRC This module will handle communications from the Loran Receiver. The only communication between the Loran Received and the Data-v-Com will be the data burst that the Loran Receiver will send once every second. This module will be divided as shown:

A. LORHAN This module will be called by the EXECLP every loop. When the LORRIN routine (B below) receives data from the Loran Receiver, if the counter TIMCNT has reached the value received from the Lap Top VTMCNT, the message will be sent to the Lap Top Computer and to the Radio handler RADHAN.

B. LORRIN Receive interrupt handler. This interrupt driven routine will ignore all data received from the Loran Receiver except the Longitude data after LON and the Latitude data after LAT. When it has successfully received this data it will set the local flag LORRCV. This flag will be cleared by the LORHAN module above.

C. LORINL Loran Initialization routine called by the Initialization module.

ALTAN.SRC This module will read the 9 discrete inputs from the altimeter and decode them and put the ASCII data in the 3 byte buffers RADALT (3) and LAPALT (3) the MSB first. LORALT and LAPALT will be imbeded in the messages going out to the respective ports to the Radio and the Lap Top Computer.
THE FOLLOWING IS A LIST OF GLOBAL FLAGS, BUFFERS ETC.

DIAGNT = Diagnostic Handler Module.
DIAINIL = Diagnostic Handler Initialization.
EXECLP = Executive Loop.
INITAL = Initialization Module.
ITIMER = Interval for timer module.
ITINIL = Initialization for timer module.
LAPALT = 3 byte buffer for alphabet written by ALTHAN
LAPDAT = USART Data for Computer handler.
LAPHAN = Lap Top Computer Handler Module.
LAPINIL = Initialization Routine for Lap Top Computer.
LAPRIN = Receive Interrupt Handler for Lap Top Computer.
LAPSTS = USART Status for Computer handler.
LAPTRN = Transmit Interrupt Handler for Lap Top Computer.
LORALT = 3 byte buffer for alphabet written by ALTHAN
LORDAT = USART Data for Loran Handler.
LORHAN = Loran Receiver Handler Module.
LORINIL = Loran Receiver Handler Initialization.
LORRIN = Loran Receiver Receive Interrupt handler.
LORSTS = USART Status for Loran Handler.
LRTLDB = From Loran Receiver to Radio Buffer, length MSGLEN
LRTDF = Flag, MSB & LSB
LRTLTS = From Loran Receiver to Lap Top Buffer, length MSGLEN
LRTLTE = End of LRTLTS buffer.
LRTLF = Flag, MSB & LSB
LTDVIB = From Lap Top Computer to DVC Buffer, length MSGLEN
LTDVIE = End of LTDVIB buffer.
LTDVF = Flag, MSB & LSB
MSGLN = Message Length without checksum and start of header
MSGTL = Total Message Length with checksum and start of header
PRNDAT = USART Data for Printer Handler.
PRRHN = Print Handler Module.
PRNSTS = Print Handler Status.
PRNTIN = Print Handler Transmit Interrupt.
PRNTIL = Print Handler Initialization.
MESIP = Radio Message In process.
NWRST = Reset Flag when set, watch dog not hit.
RADDAT = USART Data for Radio Handler.
RADHAN = Radio Handler Module.
RADINIL = Radio Handler Initialization.
RADRIN = Radio Handler Receive Interrupt handler.
RADSTS = USART Status for Radio Handler.
RADTRN = Radio Handler Transmit Interrupt handler.
RCVINP = Receive in process for MESIP
RDTLTB = From Radio to Lap Top Computer Buffer, length MSGLEN
RDTLTE = End of RDTLTB buffer.
RDTLF = Flag, MSB & LSB
SLPTST = Self test Module.
TMAXTX = Radio Transmit Maximum time before time out
TRNINP = Transmit in process for MESIP
TRNTIM = Transmission Delay, when receiving Timer 1/4 sec
VMAXTX = Value for TMAXTX.
VRNTPM = Value for TRNTIM Non volatile EEPROM
VTMCNT = Timer for Loran Status to the RADIO and the Lap Top Computer. When 0 it will not ever transmit.

CALL COMOUT ;OUT PUT MESSAGE
MOV DPTR,#ROMMSG ;OUTPUT ROM MESSAGE
CALL COMOUT ;OUTPUT MESSAGE
MOV A,R4 ;
ANL A,#0FOH ;GET MSB
SWAP A ;ROTATE TO MSB
CALL BINOUT ;CONVERT TO ASCII AND OUTPUT
MOV A,R4 ;GET DATA AND CONVERT
CALL BINOUT ;CONVERT TO ASCII AND OUTPUT
MOV DPTR,#SLFLG ;SET SELF TEST FAILURE FLAG
MOVX A,@DPTR
ORL A,#SFFAIL
MOVX @DPTR,A
SLFRM1:
 MOV R0, #00 ; CLEAR RETRY COUNTER
 ; LAP TOP USART SELFTEST

SLFDCH:
 CALL WTDREH
 CALL LAP1NL ; INITIALIZE USART FOR LAP TOP
 MOV DPTR, #LAPSTS
 MOVX A, @DPTR
 CJNE A, #LAPCMP, SLFDC1

SLFDC0:
 MOV R0, #00 ; CLEAR RETRY COUNTER
 JMP SLFPRT ; AND CONTINUE

SLFDC1:
 &COMP (SLFDCH, 19) ; RERUN 19 TIMES IF NEEDED
 MOV DPTR, #DCHFLL
 CALL COMOUT ; GET FAILED MESSAGE
 MOV DPTR, #SLFFLG
 MOVX A, @DPTR
 ORL A, #SFFAIL
 MOVX @DPTR, A

; PRINTER USART SELFTEST

SLFPRT:
 CALL WTDREH ; INITIALIZE PRINTER USAR
 CALL PRTIAL
 MOV DPTR, #FRTSTSS
 MOVX A, @DPTR
 CJNE A, #FRTCMP, SLFPR1

SLFPR0:
 MOV R0, #00 ; CLEAR RETRY COUNTER
 JMP SLFIPRT ; AND CONTINUE

SLFPR1:
 &COMP (SLFPRT, 19) ; RERUN 19 TIMES IF NEEDED
 MOV DPTR, #FRTFLL
 CALL COMOUT ; GET FAILED MESSAGE
 MOV DPTR, #SLFFLG
 MOVX A, @DPTR
 ORL A, #SFFAIL
 MOVX @DPTR, A

; I/O SELFTEST

SLFITP:
 CALL WTDREH ; I/O SELFTEST
 CALL IOINIT

; PIA #1 SELFTEST

MOV DPTR, #ICSR1 ; GET STATUS
MOVX A, @DPTR
ORL A, #ITPST1 ; ARE TIMER AND INTERRUPT
CJNE A, #ITPST1, SLFIT1 ; ENABLES SET?
MOV R0, #00 ; DID IT PASS
JMP SLFRAD ; CLEAR RETRY COUNTER

SLFIT1:
 &COMP (SLFITP, 3) ; RERUN 3 TIMES IF NEEDED
 MOV DPTR, #IT1FLL
 CALL COMOUT ; GET FAILED MESSAGE
 MOV DPTR, #SLFFLG
 MOVX A, @DPTR
 ORL A, #SFFAIL
 MOVX @DPTR, A
RADIO INTERFACE SELFTEST

SLFRAD:
CALL WTDRST ;RESET WATCHDOG
CALL RADINL ;INITIALIZE RADIO USART
MOV DPTR,#RADSTS ;READ DATA
MOV A,@DPTR
CJNE A,#RADCOM,SLFRD1

SLFRD0:
MOV R0,#00 ;CLEAR RETRY COUNTER
JMP SLFPSD ;AND CONTINUE

SLFRD1:
%COMP (SLFRAD,19) ;RERUN 19 TIMES IF NEEDED
MOV DPTR,#DCHFLL ;GET FAILED MESSAGE
CALL COMOUT ;AND OUTPUT
JNZ SLFRAD ;AND HALT
MOV D PTR,#SLFFLG ;SET SELFTEST FAILURE FLAG
MOVX A,@DPTR
ORL A,#$FFAIL
MOVX @DPTR,A

; SELFTEST PASSED

SLFP SD:
MOV D PTR,#SLFPAS ;OUTPUT SELFTEST PASSED
CALL COMOUT ;MESSAGE
CALL WTDRST ;RESET WATCHDOG
CALL LORINL ;INITIALIZE LORAN RECEIVER

; THE FOLLOWING IS FOR TRANSMIT TEST, MAINTENANCE, SHORT TIME

SLFINT:
CALL WTDRST ;RESET WATCHDOG
JNB P3.2,SLFIN E ;JUMP IF NO KEYBOARD
MOV D PTR,#MENU ;OUTPUT MENU
CALL COMOUT ;MESSAGE
CALL RCV

SLFIN E:
CJNE A,#'F',SLFPED ;NOT A 'F' CHECK FOR MEMORY
CALL DATOUT ;GO TRANSMIT AND DON'T COME BACK

SLFPED:
; SEE IF MEMORY READ/WRITE
CJNE A,#'R',SLFCDR ;NOT READ/WRITE MESSAGE
MOV R3,#'D' ;SET FOR DATA
CALL MEMRD ;MEMORY READ/WRITE
JMP SLFIN T ;EXIT MEMORY READ WRITE

SLFCDR:
CJNE A,#'C',SLFAIR ;NOT READ/WRITE MESSAGE
MOV R3,#'C' ;SET FOR CODE
CALL MEMRD ;MEMORY READ/WRITE
JMP SLFIN T ;EXIT MEMORY READ WRITE

SLFAIR:
CJNE A,#'D',SLFTXW ; NOT AIRCRAFT ID ENTRY
CALL AIRIDE ; IS AIRCRAFT ID ENTRY
JMP SLFIN T ; SEE IF MORE ENTRIES

SLFTXW:
CJNE A,#'V',SLFMFP ; NOT WAIT VALUE ENTRY
CALL WTMPE ; IS XMIT WAIT VALUE ENTRY
JMP SLFIN T ; SEE IF MORE ENTRIES
SLMFP:
CJNE A, #L', SLMFHR
CALL MSGFLP
JMP SLFIN

SLMFHR:
CJNE A, #T', SLFLRI
CALL MSGFRD
JMP SLFIN

SLFLRI:
CJNE A, #M', SLFALT
CALL ENTLOR
JMP SLFIN

SLFALT:
CJNE A, #A', SLFEPT
CALL ENTALT
JMP SLFIN

SLFEPT:
CJNE A, #P', SLFEND
CALL ENTPRT
JMP SLFIN

; END OF SELFTEST

SLFEND:
CALL WTDRT
MOV IE, #0

RET

**
**
* * SUBROUTINES * *
**
**

I0INIT:

;INITIALIZATION OF PIA (8155) #1 PORTS A, B, C
MOV DPTR, #ICTMB1
MOV A, #VICTM1
MOV DPTR, #ICTML1
MOV A, #VICTL1
MOV DPTR, #IDPS1
MOV A, #INMOD
MOV DPTR, #RADOO
MOV A, #SETGH

;TURN OFF THE FOLLOWING
MOV DPTR, #RADOO
MOV @DPTR, A

; Set Square Wave Output Freq.
; D7,D6=0,1 TIMER MODE
; D5-D0=1,0,0,1,0 5 MSB OF FREQ
; Output
; Get 8 LSB OF FREQ.
; Output
; Get Command Register Address
; Set Command Reg.
; Init High
; Radio Off
MOV DPTR,#PTT_TK ;DEASSERT PUSH TO TALK
MOVX @DPTR,A

IGINEX:
RET ;EXIT SET UP

;THE FOLLOWING SUBROUTINE WAITS 20 MS AFTER A WRITE HAS BEEN
;MADE TO AN EEPROM

WAITEP:
PUSH 1EH
PUSH 1FH ;SAVE R6 & R7
MOV R7,#15
MOV R6,#OFFH

WAITEP2:
NOP
DJNZ R6,WATEP2
DJNZ R7,WATEP1

PDP 1FH
PDP 1EH ;EXIT WAIT SUBROUTINE

;This subroutine transmits until an '.' is output at that
;time it returns.

COMOUT:
MOV A,#00H ;CLEAR ACC
MOVC A,@A+DPTR ;OUTPUT DATA POINTER
INC D PTR
CJNE A,#' ',XMTOTO ;TIME TO RESET WATCHDOG
CALL WTD RST ;YES RESET

XMTOTO:
CJNE A,#'.',XMTOT1 ;ARE WE DONE?
JMP INTRS3 ;YES EXIT

XMTOT1:
CALL TRNOUT ;NO TRANSMIT
JMP COMOUT

INTRS3:
RET ;RETURN ENABLE INTERRUPTS

;This subroutine take the ACC and converts to ASCII and outputs it
;to the console

BINOUT:
ANL A,#0FH ;STRIP OFF MSB
\$JAG (9,BINOT1) ;GREATER THAN 9
ORL A,#30H ;MAKE ASCII
JMP BINOT2 ;CONTINUE

BINOT1:
ADD A,#37H ;MAKE ASCII
CALL TRNOUT ;OUTPUT TO CONSOLE
RET ;EXIT SUBROUTINE

;THE FOLLOWING ROUTINE RESETS THE WATCHDOG IF NOT TRANSMITTING

WTD RST:
PUSH ACC
PUSH PSW
PUSH DFL
PUSH DPH
MOV A,#SETHCH ;TURN OFF RADIO
MOVC D PTR,#RADIO0
MOVX @DPTR,A
MOV DPTR,#PTT_TK ;SET PUSH TO TALK HIGH
MOVX @DPTR,A ;OR OFF
MOV DPTR,#WDTIM ;RESET WATCHDOG CHIP
MOVX @DPTR,A
POP DPH
POP DPL
POP PSW
POP ACC
RET

;THIS SUBROUTINE READS AND WRITES MEMORY AS INPUT FROM MAINT CONSOLE

MEMRWD:
MOV DPTR,#MEMDAT ;GET ENTER DATA MESSAGE
CALL COMOUT ;OUTPUT
MEMWR:
MOV DPTR,#CRLFPPD ;CARRIAGE RETURN LF
CALL COMOUT
CALL GETDAT ;GET TWO CHARACTERS
MOV DPH,A
MOV A,R4
CJNE A,#CR,MEMRW0 ;GOOD DATA CONT
JMP MEMRWD
MEMRW0:
CALL GETDAT
MOV DPL,A ;SAVE DATA
MOV A,R4
CJNE A,#CR,MEMRW1 ;GOOD DATA CONT
JMP MEMRWD
MEMRW1:
CALL MEMEQE ;GO DISPLAY MEMORY AT DPTR
MEMRW2:
MOV A,' ' ;OUTPUT A SPACE
CALL TRNOUT
CALL GETDAT ;GET NEXT DATA
MOV R7,A ;SAVE
MOV A,R4 ;GET COMMAND ENTRY
CJNE A,#CR,MEMRW3 ;GOOD CONT
INC DPTR ;GO TO NEXT LOCATION
CALL MEMDIS ;GO DISPLAY MEMORY AT DPTR
JMP MEMRWD
MEMRW3:
CJNE A,' ',MEMRW4 ;CONTINUE
JMP MEMWR ;REENTER ADDRESS
MEMRW4:
CJNE A,'/',MEMRW5 ;DATA WRITE
CALL MEMDIS ;GO DISPLAY MEMORY AT DPTR
JMP MEMRWD
MEMRW5:
CJNE A,'G',MEMRW6 ;GO DISPLAY MEMORY AT DPTR
JMP MEMRW
MEMRW6:
MOV A,'C' ;IS IT CODE?
CJNE A,1BH,MEMRW7
JMP MEMRWD
MEMRW7:
MOV A,R7
MOVX @DPTR,A ;WRITE DATA AT LOCATION
MEMRW8:
CALL MEMDIS ;GO DISPLAY MEMORY AT DPTR
JMP MEMRWD
MEMRW8:
RET

;THE FOLLOWING SUBROUTINE OUTPUTS A MEMORY DISPLAY AT DPTR
MEMDIS:
MOV R1,DPH
MOV R2,DPL ;SAVE DPTR
MOV DPTR,#CRLFDPD ;CARRIAGE RETURN LF
CALL COMOUT

MOV A,R1 ;GET DPH
CALL HEXOUT ;OUTPUT MSB
MOV A,R2 ;OUTPUT LSB
CALL HEXOUT

MOV A, #'='
CALL TRNOUT ;OUTPUT A =

MOV DPL,R2 ;GET DATA
MOV DPH,R1 ;AT DPTR

MOV A, #'C'
CJNE A, #1BH, MEMDTA ;GET CODE DESIGNATOR
CLR A ;NOT CODE BUT DATA
MOVC A, #A+DPTR ;GET CODE
JMP MEMDT1

MEMDTA:
MO VX A, #DPTR

MEMDT1:
CALL HEXOUT ;OUTPUT
MOV DPH,R1
MOV DPL,R2

RET

;THE FOLLOWING SUBROUTINE OUTPUTS AN EQUAL DISPLAY AT DPTR

MEEQE:

MOV R1, DPH ;SAVE DPTR
MOV R2, DPL

MOV A, #'= '
CALL TRNOUT ;OUTPUT A =

MOV DPL,R2 ;GET DATA
MOV DPH,R1 ;AT DPTR

MOV A, #'C'
CJNE A, #1BH, MQEDTA ;GET CODE DESIGNATOR
CLR A ;NOT CODE BUT DATA
MOVC A, #A+DPTR ;GET CODE
JMP MQEDT1

MQEDTA:
MO VX A, #DPTR

MQEDT1:
CALL HEXOUT ;OUTPUT
MOV DPH,R1
MOV DPL,R2

RET

;The following subroutine reads in the data for the Transmit Routine
;and then echo's it to the keyboard and then goes forever into the
;routine.

DATOUT:
SLFPS1:

MOV DPTR,#ENTDAT ;GET ENTER DATA MESSAGE
CALL COMOUT ;OUTPUT

CALL RCV ;GET RECEIVE CHARACTER
CALL TRNOUT ;ECHO IT OUT
MOV R1,A ;SAVE

%JAL ('0',SLFPS1) ;TOO LOW
%JAG ('9',SLFPS2) ;NOT NUMERIC

ANL A, #OFH ;MAKE NUMERIC
JMP SLFPS3 ;CONTINUE
SLFPS2:
47
1JAL ('A',SLFPS1) ; TOO LOW CONTINUE
1JAG ('P',SLFPS1) ; TOO HIGH CONTINUE
CLR C
ADD A,#0AH
SUBB A,#'A'
; MAKE HEX

SLFPS3:
SWAP A
MOV R5,A
; ROTATE MSB LSB
CALL RCV
; GET CHARACTER
CALL TRNOUT
; ECHO IT OUT
MOV R2,A
; SAVE
1JAL ('0',SLFPS1)
1JAG ('9',SLFPS5)
; TOO LOW
; NOT NUMERIC
ANL A,#0FH
; MAKE NUMERIC
JMP SLFPS6
; CONTINUE

SLFPS5:
1JAL ('A',SLFPS1)
1JAG ('P',SLFPS1)
; TOO LOW CONTINUE
; TOO HIGH CONTINUE
CLR C
ADD A,#0AH
; MAKE HEX

SLFPS6:
ORL A,R5
; GET ALL OF DATA
MOV DPTR,#MODBYT
; SET AT RAM
MOVX @DPTR,A
;
MOV DPTR,#MSGTRN
; SEND OUT TRANSMIT MESSAGE
CALL COMOUT
;
MOV A,R1
CALL TRNOUT
; OUTPUT FIRST DIGIT
MOV A,R2
CALL TRNOUT
; OUTPUT SECOND DIGIT
DATOTL:
CALL MODBUS
; AND OUTPUT FOREVER
JMP DATOTL

:The following subroutine requests and enters the aircraft Id.

AIRIDE:
MOV DPTR,#AIRMSG
; OUTPUT AIRCRAFT ID MESSAGE
CALL COMOUT
MOV DPTR,#AIRCID
; GET AIRCRAFT ID LOCATION
MOV R2,#AIRIDN
; GET NUMBER OF MESSAGES

AIRDO1:
CALL RCV
; GET NUMBER OR WHAT EVER
MOVX @DPTR,A
; SAVE IN EEPROM
INC DPTR
; GO TO NEXT LOCATION
CALL WAITEP
; WAIT FOR EEPROM
CALL TRNOUT
; ECHO TO SCREEN
DJNZ R2,AIRD01
; RECEIVE WHOLE MESSAGE
MOV DPTR,#TKYMSG
; SAY THANKYOU
CALL COMOUT
; EXIT SUBROUTINE

:The following subroutine requests and enters the Altimeter data.

ENTALT:
MOV DPTR,#ALTMSG
; OUTPUT AIRCRAFT ID MESSAGE
CALL COMOUT
MOV DPTR,#ALTBUF
MOV R2,#ALTLEN
;GET AIRCRAFT ID LOCATION
;GET NUMBER OF MESSAGES

CALL RCV
MO VX @D PTR ,A
INC D PTR
CALL W AIT EP
CALL TR NOUT
DJNZ R2,ENTAIL1
;GET NUMBER OR WHAT EVER
;SAVE IN EEPROM
;GO TO NEXT LOCATION
; WAIT FOR EEPROM
; ECHO TO SCREEN
; RECEIVE WHOLE MESSAGE

MOV D PTR ,#TKYMSG
CALL COMOUT
;SAY THANKYOU

MOV D PTR ,#ALTINH
CLR A
CPL A
MO VX @D PTR ,A
; SET ALTIMETER INHIBIT

RET
;EXIT SUBROUTINE

: The following subroutine requests and enters the LORAN Id.

ENTLO R:
MOV D PTR ,# LNGMS G
CALL COMOUT
MOV D PTR ,# PLLBUF
MOV R2,# PLL LEN
;OUTPUT LONGITUDE MESSAGE
;GET LONGITUDE LOCATION
;GET NUMBER OF CHAR

ENTL1:
CALL RCV
MO VX @D PTR ,A
INC D PTR
CALL W AIT EP
CALL TR NOUT
DJNZ R2,ENTL1
;GET NUMBER OR WHAT EVER
;SAVE IN EEPROM
;GO TO NEXT LOCATION
; WAIT FOR EEPROM
; ECHO TO SCREEN
; RECEIVE WHOLE MESSAGE

MOV D PTR ,# LAT MS G
CALL COMOUT
MOV D PTR ,# PLTBUF
MOV R2,# PL LEN
;OUTPUT LATITUDE MESSAGE
;GET LONGITUDE LOCATION
;GET NUMBER OF CHAR

ENTLT1:
CALL RCV
MO VX @D PTR ,A
INC D PTR
CALL W AIT EP
CALL TR NOUT
DJNZ R2,ENTLT1
;GET NUMBER OR WHAT EVER
;SAVE IN EEPROM
;GO TO NEXT LOCATION
; WAIT FOR EEPROM
; ECHO TO SCREEN
; RECEIVE WHOLE MESSAGE

MOV D PTR ,# TKYMSG
CALL COMOUT
;SAY THANKYOU

RET
;EXIT SUBROUTINE

: The following subroutine requests and enters the wait value.

WTVALE:
MOV D PTR ,#WTVM SG
CALL COMOUT
MOV D PTR ,#VRNTIM
;OUTPUT WAIT TILL CHANNEL CLEAR
;MESSAGE
;GET EEPROM LOCATION

CALL GET DAT
CALL WA ITEP
MOV D PTR ,#TKYMSG
CALL COMOUT
;GET HEX CHARACTER
;SAVE IN EEPROM
; WAIT FOR EEPROM
;SAY THANK YOU

RET
;EXIT SUBROUTINE

: The following subroutine requests and enters the message freqency
; for the transmission of the aircraft frequency to the Lap Top
MSGFLP:

MOV DPTR,#FRLMSG ;OUTPUT TIME IN SECONDS
 ; TO OUTPUT TO LAP TOP
 ; MESSAGE
CALL COMOUT
MOV DPTR,#VRLCNT ;GET RAM LOCATION
CALL GETDAT
MO VX @DPTR,A ;GET HEX CHARACTER
 ; SAVE IN RAM
MOV DPTR,#TKYMSG ;SAY THANK YOU
CALL COMOUT
RET ;EXIT SUBROUTINE

;The following subroutine requests and enters the message frequency
; for the transmission of the aircraft frequency to the Other Aircraft
; over the radio.

MSGFRD:

MOV DPTR,#FRRMSG ;OUTPUT TIME IN SECONDS
 ; TO OUTPUT TO AIRCRAFT
 ; MESSAGE
CALL COMOUT
MOV DPTR,#VRCNT ;GET RAM LOCATION
CALL GETDAT
MO VX @DPTR,A ;GET HEX CHARACTER
 ; SAVE IN RAM
MOV DPTR,#TKYMSG ;SAY THANK YOU
CALL COMOUT
RET ;EXIT SUBROUTINE

;THE FOLLOWING SUBROUTINE CONVERTS THE DATA IN THE ASCII TO ASCII AND
; OUTPUTS IT

HEXOUT:

PUSH ACC
SWAP A
 ;GET MSB
CALL BINOUT
 ;OUTPUT IT
POP ACC
 ;GET LSB
CALL BINOUT
 ; AND OUTPUT IT
RET

;The following subroutine requests and enters data to enable the printer.

ENTPRT:

MOV DPTR,#PRTMSG ;OUTPUT PRINTER ID MESSAGE
CALL COMOUT
CALL RCV
 ;GET NUMBER OR WHAT EVER
MOV DPTR,#PRTFLG ;GET EEPROM ADDRESS
MO VX @DPTR,A ; SAVE IN EEPROM
CALL WAITEP
 ; WAIT FOR EEPROM
CALL TRNOUT
 ; ECHO TO SCREEN
MOV DPTR,#TKYMSG ;SAY THANKYOU
CALL COMOUT
RET ;EXIT SUBROUTINE

;THIS SUBROUTINE RETURNS THE TWO BYTE DATA ENTERED

GETDAT:

MOV R4,#0 ;CLEAR R4
CALL RCV
 ;READ DATA
JAL ('0',MEMPS1) ;TOO LOW
JAL ('9',MEMPS2) ;NOT NUMERIC
CALL TRNOUT ;OUTPUT
ANL A,#0FH ;MAKE NUMERIC
JMP MEMPS3 ;CONTINUE

MEMPS2:
%JAL ('A',MEMPS1) ;TOO LOW CONTINUE
%JAG ('F',MEMPS1) ;TOO HIGH CONTINUE
CALL TRNOUT ;OUTPUT
CLR C
ADD A,#0AH :
SUBB A,'#A' ;MAKE HEX

MEMPS3:
SWAP A ;ROTATE MSB, LSB
MOV R5,A ;SAVE
CALL RCV ;GET DATA
%JAL ('0',MEMPS1) ;TOO LOW
%JAG ('9',MEMPS5) ;NOT NUMERIC
CALL TRNOUT ;OUTPUT
ANL A,#0FH ;MAKE NUMERIC
JMP MEMPS6 ;CONTINUE

MEMPS5:
%JAL ('A',MEMPS1) ;TOO LOW CONTINUE
%JAG ('F',MEMPS1) ;TOO HIGH CONTINUE
CALL TRNOUT ;OUTPUT
CLR C
ADD A,#0AH :
SUBB A,'#A' ;MAKE HEX

MEMPS6:
ORL A,R5 ;GET ALL OF DATA
JMP MEMEXT ;EXIT
MEMEXT:
MOV R4,A :EXIT SUBROUTINE

:The following subroutine outputs the data in the ACC

TRNOUT:
PUSH ACC ;SAVE
PUSH 1AH
MOV R2,#8 ;SET UP FOR 8 DATA BITS
CLR P1.2 ;SET START BIT LOW
CALL WAIT2 ; WAIT

LPTRN:
RRC A ;GET BIT IN CARRY
JNC LPTRN1 ;SET BIT
SETB P1.2 ;CARRY SET OUTPUT HIGH
JMP LPTRN2 ; CONTINUE

LPTRN1:
CLR P1.2 ;SET LOW
LPTRN2:
CALL WAIT2 ; GO WAIT
DJNZ R2,LPTRN ; LOOP UNTIL DONE
SETB P1.2 ;STOP BITS
MOV R2,#0CH ;WAIT FOR STOP BITS
The following is the RAM memory test. It does the following:

- Write each pattern found at RAMTAB to memory
- from address RAMBG to RAMED then read it back.
- if there is ever a change it will stop and put
- the error address and written and read pattern
- at RAMADD, RAMWRT and RAMRED respectively. Will always
- end with writing 00H to each address

RAMTAB:
DB 55H,0A5H,0FFH,00H

;CHECKERBOARD TEST AT USED RAM LOCATIONS
MOV R1,#0 ;GET BEGINING OF TABLE
RAMIT3:
MOV DPTR,#RAMTAB ;GET BYTE TO WRITE
MOV A,R1 ;GET TABLE ENTRY
MOVC A,@A+DPTR ;
MOV R5,A ;SAVE
INC R1 ;GET NEXT VALUE IF NEEDED
MOV R2,#RAMBG ;GET START ADDRESS TO CHECK
MOV R3,#RAMED ;GET STOPPING ADDRESS
CALL RAMCK ;GO CHECK EACH LOCATION
JC EXIT ;ERROR EXIT
MOV A,R5 ;SEE IF DONE
JNZ RAMIT3 ;CONTINUE UNTIL DONE

;SET DIAG. REPORTING TO ALL FF'S
MOV DPTR,#RAMADD ;GET RAM PASS , FAIL ADDRESS
MOV A,#0FFH ;SET ALL DATA TO OFFH
MOVC @DPTR,A ;SAVE
INC DPTR ;GET NEXT ADDRESS
MOVC @DPTR,A ;
INC DPTR ;SAVE DATA WRITEN
INC DPTR ;SAVE DATA READ
EXIT:
RET ;EXIT TEST

;THE FOLLOWING IS TO THE CODE TO FIND THE CHECKSUM. IT ADDS
;UP ALL VALUES FROM ROMBG TO ROMED AND PUTS THE VALUE AT
;CKSMAD
CKSADJ:
DB 0ACH ;CHECKSUM ADDJUST TO 00

;ROMKS:
MOV DPH,#ROMBG ;GET BEGINING ADDRESS
MOV DPL,#00H ;
MOV A,#0H ; CLEAR USED BUFFERS
MOV R4,#00H ;

ROM1:
MOV A,#0H ; CLEAR ACC
CLR C ; CLEAR CARRY BIT
MOV A,R4+DPTR ; GET DATA
INC DPTR ; GO TO NEXT ADDRESS
ADD A,R4 ; AND ADD
MOV R4,A ; AND SAVE

MOV A,#ROMED ; SEE IF THROUGH
CJNE A,DPH,ROM1 ; NOT THROUGH JUMP

MOV A,R4 ; GET CHECKSUM
MOV DPTR,#CKSMD ; AND STORAGE ADDRESS
MOVX @DPTR,A ; AND SAVE

RET ; EXIT TEST

; This subroutine writes the value of the ACC from high order address
; at R2 to but not including the high order address at R3.

; RAMCK:

; WRITE TO ALL LOCATIONS
MOV DPH,R2 ; GET STARTING ADDRESS
MOV DPL,#00H ;

RAMCK1:
MOV A,R5 ; GET VALUE
MOVX @DPTR,A ; WRITE ACC
INC DPTR ;
MOV A,R3 ; GET HIGH ORDER BYTE
CJNE A,DPH,RAMCK1 ; NOT THROUGH JUMP

; READ AT ALL LOCATIONS
MOV DPH,R2 ; GET STARTING ADDRESS
MOV DPL,#00H ;

RAMCK3:
MOVX A,#DPTR ; GET DATA AT ADDRESS
CJNE A,1DH.ERR ; ERROR EXIT
INC DPTR ; INC ADDRESS
MOV A,R3 ; GET END
CJNE A,DPH,RAMCK3 ; NOT THROUGH JUMP
CLR C ; SET DONE
RET ; EXIT SUBROUTINE

ERR:
MOV R6,A ; SAVE BAD DATA
MOV A,DPH ; GET HIGH ORDER
MOV R1,DPL ; SAVE LOW ORDER
MOV DPTR,#RAMADD ; GET RAM ADDRESS
MOVX @DPTR,A ;
INC DPTR ; SAVE BAD ADDRESS
MOV A,R1 ;
MOVX @DPTR,A ;
INC DPTR ; SAVE DATA WRITTEN
MOV A,R5 ;
MOVX @DPTR,A ;
INC DPTR ; SAVE DATA READ
MOV A,R6 ;
MOVX @DPTR,A ;

SETB C ; INDICATE ERROR
RET ; EXIT THIS MODULE

; THE FOLLOWING SUBROUTINE WAITS ONE FULL BIT

WAIT2:
CALL SWAIT ;WAIT 1/2
WAIT1:
 CALL SWAIT ;WAIT 1/2
 RET ;EXIT WAIT

;THIS SUBROUTINE WAITS 1/2 OF BIT LENGTH

SWAIT:
 PUSH 1FH
 PUSH 1EH
 MOV R7,#14H
SWAIT1:
 MOV R6,#3H

SWAIT2:
 DJNZ R6,SWAIT2
 NOP
 DJNZ R7,SWAIT1
 POP 1EH
 POP 1FH
 RET

;THE FOLLOWING IS FOR THE RECEIVE ON THE COM PORT
; AS WELL AS THE INTERRUPT HANDLER

CONINT:
RCV:
 PUSH PSW ;SAVE PSW
 PUSH 1AH ;SAVE R2
 PUSH DPL ;SAVE DPTR
 PUSH DPH

RCV1:
 MOV R2,#08H ;SET FOR 8 DATA BITS
 JB P1.3,RCV1 ;WAIT UNTIL STOP BIT

RCV2:
 CALL WAIT1 ;WAIT 1/2 BIT
 CALL WAIT2 ;WAIT 1 BIT
 JB P1.3,RCV3 ;IS DATA BIT LOW OR HIGH
 CLR C ;CLEAR CARRY
 JMP RCV4 ;CONTINUE
RCV3:
 SETB C ;SET CARRY
RCV4:
 RRC A ;ROTATE IN
 DJNZ R2,RCV2

RCV5:
 MOV R2,#4 ;WAIT FOR 2 STOP BITS AND A
 CALL WAIT2 ;LITTLE EXTRA
 DJNZ R2,RCV5
 POP DPH ;RESTORE DPTR
 POP DPL
 POP 1AH
 POP PSW
 RET
END
$TITLE (INITIALIZATION 8052 BASED)
NAME INITAL

;ACAS VAO01 ORIGIONAL RELEASE 26 JAN 90 14:12
;LAST CHANGE VAO01 02 FEB 90 10:43
;Initialization Used for serial, D/A and discrete I/O

;Basic Description of Module

;This module houses the interrupt vectors, including start, calls Selftest
;initializes that not done in Selftest, and returns control to the main
;Executive Loop.

$EJECT

;***
;***
; ** P U B L I C S **
;***
;***
PUBLIC INITIAL ;Input to this module

$EJECT

;***
;***
; ** M A C R O S **
;***
;***

;*DEFINE (JALE (CDATA,DEST)) LOCAL LABEL(
 PUSH ACC
 CLR C
 SUBL A, #$CDATA
 POP ACC
 JZ "$DEST
 CJNE A, #$CDATA, %LABEL
 JMP "$DEST

%LABEL:
)

;WAI FOR EEPROM TO BE READY

;*DEFINE (WAI) LOCAL LABEL
%LABEL:
 JNB P1.5, %LABEL
)

;*DEFINE (INTHAND(TYPSTS, TYPCNT, TYPVAL, TYPIT, USRTIN, XMPT)) LOCAL LABEL1 LABEL2

 MOV DPTR, #$TYPSTS ; 'SEE IF INTERRUPT REQUEST TRANSMIT'
 MO VX A, @DPTR
 ANL A, #$XMIT
 JZ %LABEL2 ; 'NO JUMP'
 MOV DPTR, #$TYPCNT
 MO VX A, @DPTR
 INC A
 MO VX @DPTR, A
 CJNE A, #$TYPVAL, %LABEL1 ;'COUNT AT MAX?'
 CLR A
 MO VX @DPTR, A
 CALL %TYPIT
 JMP %LABEL2 ; 'GO REINITIALIZE'

;INITIAL
CALL USRTIN ;'GO HANDLE TRN. INTERRUPT'

; Interrupt handlers for different modules

EXTERN CODE (TIMIN) ; SPARE
 ; TIMER
EXTERN CODE (CONINT) ; KEYBOARD (DIAGNOSTICS) INTERRUPT
EXTERN CODE (LAPRIN,LAPTIN) ; LAP TOP RECEIVE & TRANSMIT INTERRUPT
EXTERN CODE (LORIN) ; LORAN RECEIVE INTERRUPT HANDLER
EXTERN CODE (RADRIN,RADTIN) ; RADIO INTERRUPT HANDLERS
EXTERN CODE (PRTTIN) ; INTERRUPT HANDLER FOR PRINTER

; Selftest Entry Point
EXTERN CODE (SLFTST)

; Initialization for USARTS

EXTERN CODE (LAPINL) ; LAP TOP COMPUTER INITIALIZATION
EXTERN CODE (RADINL) ; RADIO INITIALIZATION
EXTERN CODE (PRTIAL) ; INITIALIZATION FOR PRINTER

; Interrupt counters
EXTERN XDATA (LAPRCT,LAPRCT) ; FOR LAP TOP COMPUTER
EXTERN XDATA (RADRCT,RADRCT) ; FOR RADIO
EXTERN XDATA (PRTTCT) ; FOR PRINTER

; EXTERNAL CODE FOR BEGIN OF PROGRAM
EXTERN CODE (EXECLP)

; USRAT Status addresses
EXTERN NUMBER (LAPSTS,RADSTS) ; LAP TOP, RADIO
EXTERN NUMBER (PRTSTS,TERSTS) ; PRINTER, TERMINAL

; Interrupt counter values
EXTERN NUMBER (LAPRTL,LAPRTL) ; LAP TOP COMPUTER
EXTERN NUMBER (RADRVL,RADTVL) ; RADIO
EXTERN NUMBER (TERRVL,TERTVL) ; TERMINAL
EXTERN NUMBER (PRTTVL) ; PRINTER

; USRAT Ready or Empty flags
EXTERN NUMBER (TXRDY,TXEMPT,RXRDY) ; DATA EMPTY FLAGS

; INTERNAL INITIALIZATION
EXTERN NUMBER (VT1H,VT1H,VT1L) ; TIMER 0 & 1 VALUES
EXTERN NUMBER (VTMOD) ; TIMER MODE
EXTERN NUMBER (PCON) ; PCON IN INTERNAL MEMORY

; Reset Control
EXTERN NUMBER (VRSTCT) ; RESET COUNT MAX
EXTERN NUMBER (SETHGH) ; TURN OFF RADIO
EXTRN NUMBER (SETLOW) ;TURN ON RADIO
EXTRN NUMBER (RADIOO) ;RADIO CONTROL

$EJECT

;**
;**
; ******* PROGRAM *******
;**
;**

CSEG
ORG 00H

START:
JMP EXECLP ;GO BEGIN CODE
ORG 03H
JMP CONINT ;DIAGNOSTIC START BIT
ORG 08H
JMP TIMIN ;TIMER INTRRRUP
ORG 013H
JMP INT1A ;INTERRUPT VECTOR
ORG 23H
JMP LOPRIN ;GO HANDLE NAVIGATION INTERRUPT

PROG_S segment CODE
RSEG = PROG_S

;THE FOLLOWING IS THE INTERRUPT VECTOR FOR THE USARTS

INT1A:
CLR EA ;DISABLE INTERRUPTS
PUSH PSW
PUSH DPH
PUSH DPL
PUSH ACC

;RADIO TRANSMIT USART
%INTHND (RADSTS, RADTCT, RADTVL, RADINL, RADTIN, TXRDY)

;RADIO RECEIVE USART
%INTHND (RADSTS, RADRCL, RADRVL, RADINL, RADRIN, RXRDY)

;LAP TOP TRANSMIT USART
%INTHND (LAPSTS, LAPTCT, LAPTVL, LAPINL, LAPTIN, TXRDY)

;LAP TOP RECEIVE USART
%INTHND (LAPSTS, LAPRCL, LAPRVL, LAPINL, LAPRIN, RXRDY)

;TERMINAL TRANSMIT USART
; INTHND (TERSTS, TERTCT, TERTVL, TRINIT, TRTINT, TXRDY)

;TERMINAL RECEIVE USART
; INTHND (TERSTS, TERRCT, TERRVL, TRINIT, TRRINT, RXRDY)

;PRINTER RECEIVE USART
%INTHND (PRSTS, PRRTCT, PRRTVL, PRTIAL, PRRTIN, TXEMLT)
; THE FOLLOWING INITIALIZES ALL OF THE FOLLOWING:

INITIAL:

ORL PSW, $18H ; SELECT REG. BANK 3

SETB P1.4 ; TURN ON PROCESS FAIL LED

; INITIALIZATION AND TEST OF USARTS AND ROM AND RAM

CALL SLFTST ; GO DO SELFTEST

; SET UP INTERNAL CPU REGISTERS

; TIMER 0 FOR 16 BIT TIMER FOR TMIN
; TIMER 1 FOR BAUD RATE GEN FOR COM PORT

MOV TMOD, #VIMOD ; SET TMOD FOR
; TIMER 0 = TIMER
; TIMER 1 = BAUD RATE GENERATOR

MOV TH1, #VTH1 ; SET BAUD RATE FOR COM PORT

MOV TH0, #VTH0 ; SET TIMER 0

MOV TL0, #VTL0

SETB TR0 ; START INTERNAL TIMER

SETB TR1 ; START BAUD RATE GENERATOR

SETB SM1 ; MODE 2 IN SCON

SETB REN ; ENABLE RECEIVE

MOV PCON, #80H ; SET SMOD

SETB PT1 ; SET INTERRUPT 1 HIGHEST PRIORITY

; ENABLE INTERRUPTS

SETB EX1 ; EX1 = EXTERNAL INTERRUPT 1 USARTS

CLR EX0 ; EX0 = EXTERNAL INTERRUPT 0 DIAG.

SETB ES ; ENABLE SERIAL PORT

SETB ET0 ; ET0 = INTERNAL TIMMER INTERRUPT 0

CLR EA ; CLEAR PROCESS FAIL LED

SETB EA ; EA = ENABLE ALL

MOV DPTR, #RADIO ; TURN ON RADIO

MOV A, #SETLOW

MOVS A, @DPTR ; EXIT INITIALIZATION

; END OF PROGRAM

END

$TITLE (EXECUTIVE 8052 BASED)
NAME EXECLP ;

; ORIGINAL RELEASE A001 20 JAN 90
;
; LAST CHANGE 22 MAY 90 08:14

; VA002 15 FEB 90 ADDED LORAN STATUS
; VA003 23 FEB 90 CHANGED LORAN METHOD OF UPDATE
PUBLIC EXECLP ; INPUT FROM INIT

EXTRN XDATA (TWDTHM) ; WATCHDOG TIMER COUNTER
EXTRN XDATA (TRERUN) ; RERUN TIMER

$SEJECT

$WAIT FOR EEPROM TO BE READY

$DEFINE (WAITE) LOCAL LABEL
(; $LABEL:
 JNB P1.5,%LABEL
 ;)

$CALL TO LOOPED MODULES

$DEFINE (CALLIT (MODULE))
(EXTRN CODE (#MODULE)
 LCALL #MODULE
)

$JUMP (LONG JUMP) IF A > CDATA

$DEFINE (JAG (CDATA,DEST)) LOCAL LABEL(
 PUSH ACC
 CLR C
 SUBB A,#CDATA
 JE $LABEL
 JC $LABEL
%LABEL: %DEST

%LABEL:
P %DEST

%*DEFINE (DSE (TLABEL,DSV))
PUBLIC %TLABEL
%TLABEL: DS %DSV

; EQUATE AND MAKE PUBLIC
; %*DEFINE (EQE (TLABEL,VALUE))
PUBLIC %TLABEL
%TLABEL EQU %VALUE

$EJECT

**

**

** DATA **

**

D_ABS segment XDATA
D_NONV segment XDATA
DATA_AREA segment XDATA
PROG_S segment CODE

;**********ABSOLUTE DATA AREA*************

RSEG D_ABS

;THE FOLLOWING IS A DATA AREA THAT IS USED EXTERNALLY AND SHOULD
; NOT BE CHANGED

%DSE (CHKSMAD,1) ;ROM CHECKSUM ADDRESS
%DSE (RAMADD,5) ;RAM PASS FAIL AND ADDRESS
%DSE (MODBYT,1) ;RADIO TEST ADDRESS
%DSE (RERUNA,1) ;RERUN ADDRESS

;**********NONVOLATILE RAM AREA*************

RSEG D_NONV

%EQE (AIRIDN,6) ;NUMBER OF DIGITS IN AIRCRAFT ID
;**********A CHANGE OF ABOVE ENGLN IN RADINT MUST ALSO BE CHANGED
%DSE (AIRCID,AIRIDN) ;AIRCRAFT ID
%DSE (VRNTIM,1) ;RANDOM WAIT TIMER

;**********Printer Flags*************
%DSE (PRTFTLG,1) ;VOLATILE RAM
%EQE (PRTVAL,'P') ;VALUE FOR PRINTER ATTACHED

;**********RAM AREA*************

RSEG DATA_AREA

;********** INTERRUPT COUNTERS *************

%DSE (LAPRCT,1) ;LAP TOP RECEIVE
%DSE (LAPTCT,1) ;LAP TOP TRANSMIT
%DSE (RADRCT,1) ;RADIO RECEIVE
%DSE (RADTCT,1) ;RADIO TRANSMIT
%DSE (LRCNT,1) ;Loran interrupt count
%DSE (PTCT,1) ;Printer transmit
%DSE (TERRCT,1) ;Terminal receive
%DSE (TERCT,1) ;Terminal transmit

;*************** Altimeter receiver buffer and lengths
%EQE (ALTLEN,3) ;Altimeter buffer length
%DSE (ALTBUF,ALTLEN) ;Altimeter buffer
%DSE (ALTINH,1) ;Altimeter inhibit
%EQE (ALT9IN,01H) ;For 9 strobe altimeter
%EQE (ALT1IN,07H) ;For 11 strobe altimeter

;*************** Loran receiver buffer and lengths
%EQE (PLNLEN,8) ;Longitude length
%DSE (PLNBUF,PLNLEN) ;Longitude buffer
%DSE (TLNBUF,PLNLEN) ;Temporary longitude buffer
%EQE (PLTLEN,7) ;Latitude length
%DSE (PLTBUF,PLTLEN) ;Latitude buffer
%DSE (TLTBUF,PLTLEN) ;Temporary attitude buffer
%EQE (STSLEN,11) ;Loran status length
%DSE (STSBUF,STSLEN) ;Loran status buffer
%EQE (TLOST,3) ;Actual transmit length of above
%DSE (LRTLTF,1) ;Loran data ready for lap top
%DSE (LRTDF,1) ;Loran data ready for radio

;*************** Radio handler flags and buffers***************
;************************** RECEIVED *****************************
%DSE (RDRTLF,1) ;Message from radio to lap top flag
SOHLEN EQU 02 ;START OF HEADER LENGTH

%EQE (MSGLEN,AIRIDN+PLTLEN+PLNLEN+ALTLEN+TLOST+SOHLEN) ;Message length
%DSE (RDRTLB,MSGLEN) ;Message from radio to lap top
%DSE (MNCKS,1) ;Check sum address
%DSE (DRTLB,1) ;End of RDRTLB

;*************** Radio handler flags and buffers***************
;************************** TRANSMIT *****************************

%EQE (TRNMAX,1) ;Number of times to transmit

%EQE (MSGLN,MSGLEN+1+SOHLEN) ;Entire transmit length

;;;;;;: CAUTION DO NOT ALTER THE FOLLOWING ORDER: ;;;;;;;:
%DSE (STTRAN,SOHLEN) ;Area filled with start of headers
%DSE (RADOTB,MSGLEN) ;Buffer for message
%DSE (TRNCKS,1) ;Checksum address

DS (TRNMAX-1)*MSGLN

%DSE (EDTRAN,0) ;End of buffer

;******************************* END OF BUFFER ****************************

%DSE (VTRCNT,1) ;Count for messages to radio

;*************** Lap Top Handler Flags***************
%DSE (VLRCTN,1) ;Count between messages
%DSE (NNDRTS,1) ;No watch dog reset

;*************** SetTest FLAGS***************

%DSE (SLLFG,1) ;Selftest flag
%EQE (SFFAIL,01H) ;DVC selftest failure flag
%EQE (NOLRD,02H) ;No loran update for radio
%EQE (NOLRLT,04H) ;No loran update for lap top
%EQE (TRRDSST,08H) ;NOT TRANSMITTED TO RADIO
%EQE (TRLRST,10H) ;NOT TRANSMITTED TO LAPTOP
%EQE (OUTFLG,20H) ;NOT ACCEPTING OTHER AIRCRAFT MSG'S

$EJECT

* *
* E Q U A T E S *
* *

%EQE (VRSNION,0A006H) ;VERSION NUMBER

%EQE (ICSR1,0A010H) ;INT. CMD STATUS REG
%EQE (ICTMH1,0A015H) ;MSB FOR SQUARE WAVE FREQ.
 ;(1800 BAUD)
%EQE (ICTHH1,0A014H) ;SET SQUARE WAVE OUTPUT FREQ.
%EQE (VICTM1,41H) ;D7,D6=0,1 TIMER MODE
 ;D5-D0=1,0,0,1,0 5 MSB OF FREQ
%EQE (VICTL1,038H) ;VALUE FOR MSB ABOVE (1200 BAUD)
%EQE (ITPS1,0C9H) ;VALUE FOR LSB ABOVE (1200 BAUD)
%EQE (OUTMOD,0CCH) ;STATUS VERIFICATION
%EQE (INMOD,0C9H) ;PORT C OUTPUT
 ;PORT C INPUT
 ;D7,D6=TIMER MODE SQUARE WAVE=1,1
 ;D5=INT ENB PORT B=0
 ;D4=INT ENB PORT A=0
 ;D3,D2=I/O PORT C (INPUTS)=0,0
 ;D1=I/O PORT C (OUTPUTS)=1,1
 ;D0=I/O PORT A (INPUTS)=0

; PORT A (INPUTS)
%EQE (PORTA1,0A011H) ;ADD FOR PORT A
%EQE (ALT_A1,01H) ;01H - ALTITMETER INPUT A1 (PA0)
%EQE (ALT_D4,02H) ;02H - ALTITMETER INPUT D4 (PA1)
%EQE (ALT_D2,04H) ;04H - ALTITMETER INPUT D2 (PA2)
%EQE (DPTTIN,20H) ;08H - SPARE (PA3)
%EQE (CARRIN,40H) ;10H - SPARE (PA4)
%EQE (PS1,0F0H) ;20H - INPUT FOR DAT_PTT (PA5)
%EQE (PS2,0F1H) ;40H - CARRIER ACTIVE SENSE (PA6)
%EQE (PS3,0F2H) ;80H - NOT USED (PA7)

; PORT B (INPUTS)
%EQE (PORTB1,0A012H) ;PORT B ADD
%EQE (ALT_C4,01H) ;01H - ALTITMETER INPUT C4 (PB0)
%EQE (ALT_C2,02H) ;02H - ALTITMETER INPUT C2 (PB1)
%EQE (ALT_C1,04H) ;04H - ALTITMETER INPUT C1 (PB2)
%EQE (ALT_B4,08H) ;08H - ALTITMETER INPUT B4 (PB3)
%EQE (ALT_B2,10H) ;10H - ALTITMETER INPUT B2 (PB4)
%EQE (ALT_B1,20H) ;20H - ALTITMETER INPUT B1 (PB5)
%EQE (ALT_A4,40H) ;40H - ALTITMETER INPUT A4 (PB6)
%EQE (ALT_A2,80H) ;80H - ALTITMETER INPUT A2 (PB7)

; PORT C (INPUTS & OUTPUTS)
%EQE (PORTC1,0A013H) ;

%EQE (RADIO,0A051H) ;LOW RADIO ON
%EQE (PTT_TX,0A052H) ;LOW PUSH TO TALK OUTPUT TO RADIO

;CPU USART

;**Loran Receiver**
;***************LAP TOP COMPUTER SERIAL CONTROL***************

;EQE (LAPSST, 0A061H) ;MODE/COMMAND/STATUS
;EQE (LAPDAT, 0A060H) ;TRANSMIT AND RECEIVE DATA

;EQE (LAPMIF, 0CEH) ;SET MODE INSTRUCTION FORMAT
;D7=1, D6=1 2 STOP BITS
;D5=0 ODD PARITY
;D4=0 PARITY DISABLED
;D3=1, D2=1 8 DATA BITS
;D1=1, D0=0 16X BAUD RATE FACTOR

;EQE (LAPTRS, 035H) ;ENABLE TRANSMIT AND RECEIVE
;D5=1 SET RTS
;D4=1 RESET ERROR FLAGS
;D2=1 SET RECEIVE ENABLE
;D0=1 SET TRANSMIT ENABLE

;EQE (LAPRCS, 034H) ;ENABLE RECEIVE (NOT TRANSMIT)
;D5=1 SET RTS
;D4=1 RESET ERROR FLAGS
;D2=1 SET RECEIVE ENABLE
;D0=0 DISABLE TRANSMIT

;EQE (LAPCMP, 0C5H) ;STATUS COMPARISON

;EQE (LAPRLVL, 0CH) ;RECEIVE INTERRUPT COUNT MAX
;EQE (LAPTLVL, 0CH) ;TRANSMIT INTERRUPT COUNT MAX
;EQE (LAPRETL, 06H) ;USART RESET TRIES

;*************** RADIO COMMUNICATION CONTROLLER ***************

;EQE (RADSTS, 0A031H) ;MODE/COMMAND/STATUS
;EQE (RADDAT, 0A030H) ;TRANSMIT AND RECEIVE DATA
;EQE (RADMIF, 0CEH) ;SET MODE INSTRUCTION FORMAT
;D7=1, D6=1 2 STOP BITS
;D5=0 ODD PARITY
;D4=0 PARITY DISABLED
;D3=1, D2=1 8 DATA BITS
;D1=1, D0=0 16X BAUD RATE FACTOR

;EQE (RADTRS, 031H) ;ENABLE TRANSMIT
;D5=1 SET RTS
;D4=1 RESET ERROR FLAGS
;D0=1 SET TRANSMIT ENABLE

;EQE (RADRCS, 034H) ;ENABLE RECEIVE (NOT TRANSMIT)
;D5=1 SET RTS
;D4=1 RESET ERROR FLAGS
;D2=1 SET RECEIVE ENABLE
;D0=0 DISABLE TRANSMIT

;EQE (RADCOM, 0C5H) ;STATUS COMPARISON
;EQE (RADRES, 05H) ;RADIO RESET

;EQE (RADRLVL, 0CH) ;RECEIVE INTERRUPT COUNT MAX
;EQE (RADTLVL, 0CH) ;TRANSMIT INTERRUPT COUNT MAX
;EQE (RADSRLVL, 03H) ;SYNCH INTERRUPT COUNT MAX
;EQE (RADRET, 06H) ;USART RESET TRIES

;***************PRINTER COMMUNICATION CONTROLLER***************

;EQE (PRTSTS, 0A071H) ;MODE/COMMAND/STATUS
;EQE (PRTDAT, 0A070H) ;TRANSMIT AND RECEIVE DATA

;EQE (PRTMIF, 0CEH) ;SET MODE INSTRUCTION FORMAT
;D7=1, D6=1 1 STOP BIT
;D5=0 ODD PARITY
;D4=0 PARITY DISABLED
;D3=1, D2=1 8 DATA BITS
;D1=1, D0=0 16X BAUD RATE FACTOR
\$EQE (PRITRS, 11H) ; ENABLE TRANSMIT
 ; D5=0 SET RTS
 ; D4=1 RESET ERROR FLAGS
 ; D2=0 SET RECEIVE ENABLE
 ; D0=1 SET TRANSMIT ENABLE

\$EQE (PRITCM, 0C5H) ; STATUS COMPARISON

\$EQE (PRITVL, 0CH) ; TRANSMIT INTERRUPT COUNT MAX

*************************** TERMINAL ***************************

\$EQE (TERSTS, 0A061H) ; MODE/COMMAND/STATUS
\$EQE (TERDAT, 0A060H) ; TRANSMIT AND RECEIVE DATA
\$EQE (TERMIF, 0CH) ; SET MODE INSTRUCTION FORMAT
 ; D7=0, D6=1 1 STOP BIT
 ; D5=0 ODD PARITY
 ; D4=0 PARITY DISABLED
 ; D3=1, D2=1 8 DATA BITS
 ; D1=1, D0=0 16X BAUD RATE FACTOR

\$EQE (TEGRNS, 50H) ; ENABLE TRANSMIT AND RECEIVE
 ; D5=1 SET RTS
 ; D4=1 RESET ERROR FLAGS
 ; D2=1 SET RECEIVE ENABLE
 ; D0=1 SET TRANSMIT ENABLE

\$EQE (TEGRCS, 50H) ; ENABLE RECEIVE (NOT TRANSMIT)
 ; D5=1 SET RTS
 ; D4=1 RESET ERROR FLAGS
 ; D2=1 SET RECEIVE ENABLE
 ; D0=0 DISABLE TRANSMIT

\$EQE (TERCOM, 0DFH) ; STATUS COMPARISON
\$EQE (TEGRVL, 0CH) ; RECEIVE INTERRUPT COUNT MAX
\$EQE (TEGRTVL, 0CH) ; TRANSMIT INTERRUPT COUNT MAX

****************** USAR EQUATES ******************

; READ
\$EQE (RXRDY, 02H) ; READY FOR RECEIVE
\$EQE (TXRDY, 01H) ; READY FOR TRANSMIT
\$EQE (TXEMTP, 04H) ; TRANSMITTER EMPTY
\$EQE (TRSERR, 38H) ; FRAMING, OVERRUN OR PARITY ERROR

; WRITE
\$EQE (TSRDIS, 10H) ; DISABLE USART & ERROR RESET
\$EQE (TSRRES, 05H) ; RESET USART & ERROR RESET
\$EQE (TRANON, 01H) ; ENABLE TRANSMIT AND RESET ERROR
\$EQE (TRANOF, 0EH) ; DISABLE TRANSMIT
\$EQE (RECON, 01H) ; ENABLE RECEIVE AND RESET ERROR
\$EQE (RECOV, 0EBH) ; DISABLE RECEIVE

***************** WATCHDOG EQUATES *****************

\$EQE (WDDTMM, 0F000H) ; WATCHDOG TIMER ADDRESS
\$EQE (VWDHTC, 225) ; MAX WATCH DOG RESETS OUT OF LOOP
\$EQE (VRSTCT, 5) ; MAX RESETS
\$EQE (WDDTMM, 01) ; VALUE FOR WATCHDOG TIMER

******************* RAM AND ROM LIMITS *******************

\$EQE (RAMSTG, 80H) ; MSB OF BEGINING OF RAM
\$EQE (RAMEND, 90H) ; MSB OF END OF RAM CHECK
\$EQE (ROMSTG, 00H) ; MSB OF BEGINING OF ROM CHECK
\$EQE (ROMEND, 40H) ; MSB OF END OF RAM CHECK

********** Message Length Definition ******************

\$EQE (MESSGOT, 35) ; TOTAL LENGTH OF MESSAGE
 ; NUMBER OF SPACES IN LAPTOP MESSAGE
\$EQE (LATSPC, MESSGOT - PITLEN - PNLLEN - AIRIDN - ALTLEN - TLOST 6)
\$EQE (RSTSPC, MESSGOT - AIRIDN - 7) ; NUMBER OF SPACES IN RESET MESSAGE
*************** CPU INTERNAL TIMER & INTERRUPT SETUP ***************

; TIMERS 0 & 1

$EQU (VTMOD, 21H) ; VALUE FOR TMOD
; TIMER 0 = 16 BIT AUTO RELOAD TIMER
; TIMER 1 = 8 BIT AUTO RELOAD
; BAUD RATE Gen.

$EQU (VTH1, 0F3H) ; RELOAD VALUE FOR TIMER 1
; CPU USART FOR 1200/2400 BAUD

$EQU (VTH0, 0FH) ; RELOAD VALUE FOR TIMER 0 LSB
; RELOAD VALUE FOR TIMER 0 MSB

$EQU (PCON, 87H) ; PCON IN INTERNAL MEMORY

; COMMONLY USED SYMBOLS

$EQU (SETLOW, 0H) ; SET OUTPUT LOW
$EQU (SETHGH, 01H) ; SET OUTPUT HIGH
$EQU (SC1, 0A5H) ; FIRST SYNC CHARACTER
$EQU (SC2, 0D2H) ; SECOND SYNC CHARACTER
$EQU (CR, 0DH) ; CARRIAGE RETURN
$EQU (LF, 0AH) ; LINE FEED
$EQU (TRUE, 0FFH) ; POSITIVE
$EQU (FALSE, 00) ; NEGATIVE
$EQU (STBRK, 5BH) ; START BRACKET [
$EQU (ENDBRK, 5DH) ; END BRACKET OF]
$EQU (RERUNV, 'I') ; RERUN VALUE
$EQU RERUN EQU 02 ; RE_RUN TIMER

$EJECT

;**
;
;**
;
;***
;
;***
;
;***
;
;***
;
;**
;
;***
;
;***
;
;***
;
;***

RSEG PROG_S

; Beginning of Main Program

EXECLP:

MOV SP, #30H ; SET STACK POINTER
MOV IE, #0 ; CLEAR INTERRUPTS

CALLIT (INITIAL) ; Initialization Routine

EXE1:

CALLIT (RADHAN) ; RADIO Handler
CALLIT (LAPHAN) ; LAP TOP Handler
CALLIT (LORHAN) ; Loran Receiver Handler
CALLIT (ALTHAN) ; Altimeter Handler

CALL WDDRST ; GO RESET WATCH DOG TIMER

MOV DPTR, #NDDRST ; NO WATCH DOG RESET
MOVX A, @DPTR
JNZ EXECLP ; CONTINUE

; RERUN IF NEEDED

MOV DPTR, #RERUNA ; NEED TO RERUN
MOVX A, @DPTR
CJNE A, #RERUNV, EXECL1:
JMP EXE1 ; Continue to Loop

EXECL1:

CJNE A, #TRUE, EXECL2 ; RERUN INITIALIZED
JMP EXECL4

EXECL2:

MOV A, #TRUE
MOVX @DPTR, A ; SET RERUN INITIALIZED
EXEC3:
 MOV DPTR, #TRERUN ; SET RERUN TIMER
 MOV A, #VRERUN
 MOVX @DPTR, A

EXEC4:
 MOV DPTR, #TRERUN ; RERUN TIMER EXPIRED?
 MOVX A, @DPTR
 JNZ EXE1

EXEC5:
 MOV DPTR, #RERUNA
 MOV A, #RERUNV
 MOVX @DPTR, A
 JMP EXECLP ; LOOP

;**
;**
; * * SUBROUTINES * *
; * * * * * *
;**

;THE FOLLOWING SUBROUTINE WAITS 20 MS AFTER A WRITE HAS BEEN MADE TO AN EEPROM
WAITEP:
 PUSH 1EH
 PUSH 1FH ;SAVE R6 & R7
 MOV R7, #15

WAITEP1:
 MOV R6, #0FFH

WAITEP2:
 NOP
 DJNZ R6, WATEP2
 DJNZ R7, WATEP1
 POP 1FH
 POP 1EH

RET ;EXIT WAIT SUBROUTINE

;THE FOLLOWING SUBROUTINE RESETS THE WATCHDOG TIMER
; IF NOT INTERRUPT BOUND

WDRST:
 CLR A ; CLEAR COUNT
 MOV DPTR, #RADDRCT ; CLEAR RADIO RECEIVE INTERRUPT
 MOVX @DPTR, A

 MOV DPTR, #RADDRCT ; CLEAR RADIO TRANSMIT INTERRUPT
 MOVX @DPTR, A

 MOV DPTR, #LAPRCT ; CLEAR LAP TOP RECEIVE INTERRUPT
 MOVX @DPTR, A

 MOV DPTR, #LAPRCT ; CLEAR LAP TOP TRANSMIT INTERRUPT
 MOVX @DPTR, A

 MOV DPTR, #PRTRCT ; CLEAR PRINTER TRANSMIT INTERRUPT
 MOVX @DPTR, A

 MOV DPTR, #TWDTIM ; WATCH DOG TIMER EXP
 MOVX A, @DPTR
 JNZ WDRST4 ; NO CONTINUE
MOV DPTR,#PORTA1 ; DATPTT LOW
MOVX A,#DPTR
ANL A,#DPTTIN
JNZ WTDRA4 ; YES DON'T SET WATCHDOG
MOV DPTR,#TWDTM ; GET WATCH DOG TIMER
MOV A,#TWDTM ; YES RESET TIMER
MOVX @DPTR,A
MOV DPTR,#WTDTIM ; RESET WATCHDOG CHIP
MOVX A,@DPTR
WTDRA4:
RET

$TITLE (TIMER 8052 BASED)
NAME TIMER ; DDECREMENTS TIMERS EVERY 1/4 SEC
; ACAS ORIGIONAL RELEASE 23 JAN 90 15:53
; LAST CHANGE 15 MAY 1990 8:48

; Basic Description of Module
; This module consists of two groups of timers:
; ; GROUP 1
; ; This group has timers from TSTAR1 to TEND1. They are decremented
; until they are zero. They are decremented every 1/4 second
; which is determined by the initialization of the clock
; calendar chip using the PIE output.
; ; GROUP 2
; ; This group has timers from TSTAR2 to TEND2. They are decremented
; until they are zero. They are decremented every 1 second
; which is determined by counting four ticks or decrements of the
; timers in group 1.
; ; GROUP 3
; ; This group has timers from TSTAR3 to TEND3. They are decremented
; until they are zero. They are decremented every 1 minute
; which is determined by counting sixty ticks or decrements of the
; timers in group 2.

**

PUBLIC TIMIN ; Input to this module
EXTRN NUMBER (VTH0,VTL0) ; TIMER 0 RELOAD VALUES

**

* *
MACROS

```
: DEFINE AND MAKE PUBLIC

:DEFINE (DSE (TLABEL))

PUBLIC %LABEL

%LABEL:

DS  1

$EJECT

: THIS IS DATA USED INTERNAL TO THIS FILE ONLY

DATA_AREA  segment XDATA
RSEG       DATA_AREA

: GROUP 1 DECREMENTED EVERY 1/4 SECOND

GROUP1:  DS  1

VGRUP1   EQU  1

%DSE (TSTART1) ; START OF TIMERS GROUP 1 (SPARE)

%DSE (TWDTM) ; WATCH DOG TIMER COUNTER

%DSE (TLRPTO) ; LAP TOP RECEIVE TIME OUT COUNTER

%DSE (TLFRAT) ; LAP TOP UART REFRESH TIMER

%DSE (TLRRTO) ; LORAN RECEIVE TIME OUT COUNTER

%DSE (TWATCH) ; RADIO WATCHDOG TIMER

%DSE (TRCVE) ; RADIO RECEIVE TIME OUT TIMER

%DSE (TWAXT) ; RADIO WAIT FOR TRANSMIT

%DSE (TCDRNT) ; RADIO RECEIVE HANG UP TIMER

%DSE (TRENT) ; RERUN TIMER

%DSE (TRCLED) ; RECEIVE ON LED TIMER (LAPHAN)

%DSE (TEND1) ; END OF TIMERS GROUP 1 (SPARE)

: GROUP 2 DECREMENTED EVERY SECOND

%DSE (GROUP2) ; GROUP 2 COUNTER (SET BY VGRUP2)

VGRUP2   EQU  3

%DSE (TSTART2) ; START OF TIMERS GROUP 2 (SPARE)

%DSE (TMAXTX) ; RADIO MAX. WAIT TO TRANSMIT

%DSE (TTRCNT) ; WAIT TO TRANSMIT TO RADIO

%DSE (TLCNT) ; WAIT TO SEND MESSAGE TO LAPTOP

%DSE (TEND2) ; END OF TIMERS GROUP 2 (SPARE)

: GROUP 3 DECREMENTED EVERY MINUTE

%DSE (GROUP3) ; GROUP 3 COUNTER (SET BY VGRUP3)

VGRUP3   EQU  59

%DSE (TSTART3) ; START OF TIMERS GROUP 3 (SPARE)

%DSE (TEND3) ; END OF TIMERS GROUP 3 (SPARE)

$EJECT
; ********************************************************************
;                  PROGRAM                  *
; ********************************************************************

; PROG_S     segment  CODE
REG_PROG_S

TIMIN:
    ORL    PSW,#18H  ;SET RB
    PUSH   PSW      ;SAVE PSW
    PUSH   DPH      ;
    PUSH   DPL      ;
    PUSH   ACC      ;
    PUSH   1DH      ; (REG5)
    PUSH   1CH      ; (REG4)

;GROUP 1 FAST TIMERS 1/4 SECOND / TICK
    MOV     DPTR,#GROUP1  ;GET GROUP 1 COUNTER
    MOVX   A,@DPTR      ;
    JZ     TIMG1S       ;COUNTED DOWN GO DEC.
    DEC    A            ; NOT DONE DEC AND CONT.
    MOVX   @DPTR,A      ;
    JMP    TIMG3E       ;

    TIMG1S:
        MOV     A,#VGRUP1  ;RESET GROUP 1 COUNTER
        MOVX   @DPTR,A    ;
        MOV     DPTR,#TEND1+1  ;GET LAST VALUE +1
        MOV     R5,DPL    ; TIMER
        MOV     R4,DPH    ;
        MOV     DPTR,#TSTAR1  ;GET FIRST TIMER

    TIMG11:
        MOVX   A,@DPTR    ;GET VALUE
        JZ     TIMG12     ; CONTINUE IF ZERO
        DEC    A          ;
        MOVX   @DPTR,A    ;

    TIMG12:
        INC    DPTR       ;GO TO NEXT ONE
        MOV     A,DPH     ;SEE IF DONE
        CJNE   A,1CH,TIMG11  ;CONTINUE IF NOT EQUAL
        MOV     A,DPL     ;
        CJNE   A,1DH,TIMG11  ;

;GROUP 2 SLOW TIMERS 1 SECOND / TICK
    MOV     DPTR,#GROUP2  ;GET GROUP 2 COUNTER
    MOVX   A,@DPTR      ;COUNTED DOWN GO DEC.
    JZ     TIMG2S       ; NOT DONE DEC AND CONT.
    DEC    A            ;
    MOVX   @DPTR,A      ;
    JMP    TIMG3E       ;

    TIMG2S:
        MOV     A,#VGRUP2  ;RESET GROUP 2 COUNTER
        MOVX   @DPTR,A    ;
        MOV     DPTR,#TEND2+1  ;GET LAST VALUE +1
        MOV     R5,DPL    ; TIMER
        MOV     R4,DPH    ;
        MOV     DPTR,#TSTAR2  ;GET FIRST TIMER

    TIMG21:
        MOVX   A,#DPTR    ;GET VALUE
        JZ     TIMG22     ; CONTINUE IF ZERO
        DEC    A          ;
        MOVX   @DPTR,A    ;
TIMG22:
  INC DPTR ; GO TO NEXT ONE
  MOV A,DPH ; SEE IF DONE
  CJNE A,1CH,TIMG21 ; CONTINUE IF NOT EQUAL
  MOV A,DPL ;
  CJNE A,1DH,TIMG21 ;

; GROUP 3 SLOW Timers 1 MINUTE / TICK
  MOV DPTR,#GROUP3 ; GET GROUP 3 COUNTER
  MOVX A,@DPTR ;
  JZ TIMG35 ; COUNTED DOWN GO DEC.
  DEC A ; NOT DONE DEC AND CONT.
  MOVX @DPTR,A ;
  JMP TIMG3E ;

TIMG35:
  MOV A,#VGRUP3 ; START OF GROUP 3 Timers
  MOVX @DPTR,A ; RESET GROUP 3 COUNTER
  MOV DPTR,#TEND3+1 ; GET LAST VALUE +1
  MOV R5,DPL ; TIMER
  MOV R4,DPH ;
  MOV DPTR,#TSTAR3 ; GET FIRST TIMER

TIMG31:
  MOVX A,@DPTR ; GET VALUE
  JZ TIMG32 ; CONTINUE IF ZERO
  DEC A ;
  MOVX @DPTR,A ;

TIMG32:
  INC DPTR ; GO TO NEXT ONE
  MOV A,DPH ; SEE IF DONE
  CJNE A,1CH,TIMG31 ; CONTINUE IF NOT EQUAL
  MOV A,DPL ;
  CJNE A,1DH,TIMG31 ;

TIMG3E:
  MOV TH0,#VTH0 ; SET TIMER 0
  MOV TL0,#VTLO ;
  POP 1CH ; RESTORE SAVED SFR, ETC.
  POP 1DH ;
  POP ACC ;
  POP DPL ;
  POP DPH ;
  POP PSW ;
  RETI ; EXIT INTERRUPT

; END OF PROGRAM
END

$TITLE (RADHAN 8052 BASED)
NAME RADHAN ; RADIO INTERRUPT HANDLER

; VA001 ORIGIONAL RELEASE
; LAST CHANGE VA004 15 MAY 90 08:14

; VA002 14 FEB 90 ADDED LORAN STATUS
; VA003 23 FEB 90 CHANGED LORAN UPDATE METHOD
; VA004 15 MAY 90 CHANGED ATTACK DELAY TO 180 MS

; The purpose of this module is to handle and buffer I/O
; between the RADIO module and the radio modem.

; Basic Description of Module:
; RADHAN: This module will interface with the RADIO by looking at a flag
; LRTRDF and transmitting what is in the buffers for altitude, latitude
; and longitude when the flag is set. When the message is sent out it
; will clear the flag LRTRDF. When it has received a message it will
put it in RDTLTB buffer and set flag RDTLTF. It will not accept
another message until this flag is cleared. This module will have tw
inputs. One called by EXECLP and two called from interrupts, one for
transmit and one for receive. This module will be responsible
for MESINP with TRNINP so that the watchdog timer will not be reset
when transmitting.

This module will handle only one kind of message format which is
MSGLEN characters long.

RADIAN module will be polite and wait for the frequency to clear
before transmitting. If it must wait longer than 10 sec., the
message will be blurted out even if the channel is busy. If
the channel clears before the 10 sec. timer has expired, it will
transmit immediately, because there may be other systems that were
waiting and begin to transmit at the same time. It will wait an
additional period of time as determined by reading EEPROM VRNTIM

RADINL This is the Initialization Routine called by Selftest

RADINR This is the receive interrupt routine

RADTIN This is the transmit interrupt routine

PUBLIC RADTIN ;Input to this module
PUBLIC RADINL ;Receive interrupt
PUBLIC RADINR ;Transmit interrupt
PUBLIC RADINL ;Initialization
EXTRN CODE (PRTC M) ;TEMP

;THIS DATA IS USED BY OTHER MODULES
;AND IS DECLARED IN EXECLP

; RECEIVE BUFFER ADDRESSES
EXTRN XDATA (RDTLTB,MINCKS)

;TIMERS
EXTRN XDATA (TWATCH) ;WATCHDOG TIMER
EXTRN XDATA (TRCVE) ;RECEIVE TIME OUT TIMER
EXTRN XDATA (TWATCH) ;WAIT FOR TRANSMIT
EXTRN XDATA (TRMAXTX) ;MAX. WAIT TO TRANSMIT
EXTRN XDATA (TRDRTN) ;BEFORE BLET OUT
EXTRN XDATA (VRNTIM) ;REENABLE RECEIVE

;TIMER VALUES
EXTRN XDATA (VRNTIM) ;WAIT TO TRANSMIT TIMER

; INPUT AND OUTPUT
EXTRN NUMBER (SETHGH,SETHW) ;OUTPUTS BEFORE TRANS.
EXTRN NUMBER (PTT_TK) ;CARRIER ACTIVE SENSOR

;OUTPUTS BEFORE TRANS.
; USAR CONTROL
EXTRN NUMBER (RADSTR, RADDAT) ;MODERM CONTROL
EXTRN NUMBER (RADCST, RADDAT) ;ENABLE RECEIVE & TRANSMIT
EXTRN NUMBER (RADMIF) ;MODE INSTRUCTION FORMAT
EXTRN NUMBER (TRSDB, RADDAT) ;DISABLE USAR
EXTRN NUMBER (TRRRER) ;FRAMING OVERRUN OR PARITY ERROR
EXTRN NUMBER (TXEMPT) ;TRANSMIT EMPTY

; RECEIVE AND TRANSMIT BUFFER LENGTHS
EXTRN NUMBER (TRNMAX) ;# OF TIMES TO TRANSMIT
EXTRN NUMBER (MSGLEN) ;MESSAGE LENGTH
EXTRN NUMBER (MSGTLEN)

; SYNC CHARACTERS
EXTRN NUMBER (SC1, SC2) ;SC1 = 1ST SC2 = 2ND

; LAP TOP INTERFACE
EXTRN XDATA (RDRTLF) ;MESSAGE READY FROM RADIO TO LAP TOP
EXTRN XDATA (AIRCID) ;AIRCRAFT ID IN NONVOLATILE RAM
EXTRN NUMBER (AIRDN) ;LENGTH OF AIRCRAFT ID

; LORAN RECEIVER INTERFACE
EXTRN XDATA (LWTRDF) ;DATA READY FOR LAP TOP COMPUTER
EXTRN XDATA (PLSBUF, PLSBUF) ;LATTITUDE AND LONGITUDE BUFFERS
EXTRN NUMBER (PLTLEN, PLTLEN) ;LATTITUDE AND LONGITUDE LENGTH
EXTRN XDATA (STSBUF) ;LORAN STATUS BUFFER
EXTRN NUMBER (STSLN) ;LORAN STATUS BUFFER LENGTH

; ALTIMETER INTERFACE
EXTRN XDATA (ALTBUF) ;ALTIMETER DATA
EXTRN NUMBER (ALTLEN) ;ALTIMETER DATA LENGTH

; SELFTEST INTERFACE
EXTRN XDATA (SLLFFLG) ;SELFTEST FLAG
EXTRN NUMBER (NOLLRT) ;NO LORAN UPDATE FOR RADIO
EXTRN NUMBER (TRRDTST) ;NOT TRANSMITTED TO RADIO
EXTRN NUMBER (TRRTST) ;NOT TRANSMITTED TO LAPTOP

; TRANSMIT BUFFER AND LENGTHS
EXTRN XDATA (STTRAN) ;START OF TRANSMIT BUFFER
EXTRN XDATA (RADOBT) ;MESSAGE IN TRANSMIT BUFFER
EXTRN XDATA (EDTRAN) ;END OF TRANSMIT BUFFER

; THIS IS DATA USED INTERNAL TO THIS FILE ONLY
;
$EXIT

DATA_AREA segment XDATA
PROGS segment CODE
RSEG

RCVFLG: DS 1 ;RECEIVE FLAGS
SCIRC: EQU 01H ;FIRST SYNC CHARACTER FLAG
RINTF: EQU 02H ;RECEIVE IN PROCESS
RECIND: EQU 04H ;RECEIVE INITIALIZED
MTPTR: DS 2 ;TRANSMIT MESSAGE POINTER
MINPTR: DS 2 ;INPUT MESSAGE POINTER

; MESSAGE IN PROCESS BUFFER
MESINF: DS 1 ;MESSAGE INPROCESS FLAGS
RCVINF: EQU 01H ; RECEIVE IN PROCESS
RCVIPN: EQU OFFH - RCVINF ;RCVIPN/
TRNINF: EQU 02H ; TRANSMIT IN PROCESS
TRNINF: EQU OFFH - TRNINF ;TRNINF/
VRDRNT: EQU 04 ; REENABLE RECEIVE
$EJECT

;***********************************************************************
;
; *** MACROS ***
;
;***********************************************************************
;
;JUMP (LONG JUMP) IF A>CDATA
%
*DEFINE (JAG (CDATA,DEST))LOCAL LABEL(
  PUSH ACC
  CLR C
  SUBB A,%CDATA
  JZ %LABEL
  JC %LABEL
  POP ACC
  JMP %DEST
%LABEL:
  POP ACC
)

$EJECT

;***********************************************************************
;
; *** EQUATES ***
;
;***********************************************************************
;
;THE FOLLOWING IS INTERNAL EQUATES ONLY
;
;Receive flags (RCVFLG) see DATA above
;
;Message Inprocess flags (MESINP) see DATA above
VWATCH  EQU 05H ;WATCH DOG TIMER VALUE
VRCVE   EQU 05H ;RECEIVE TIME OUT VALUE

;MISC.
XWAIT   EQU 22   ;WAIT XWAIT*10 ms before transmit
XWAITS  EQU 10   ;WAIT 10 MS
VMAXTX  EQU 10   ;MAX WAIT BEFORE BLERT OUT
               ;VALUE FOR VMAXTX

$EJECT

;***********************************************************************
;
; *** PROGRAM ***
;
;***********************************************************************
;
RSEG     PROC_S

;This input RADHAN is polled by the main exec EXECLP and it
;checks to see if a message needs to go out and if so enables
;the appropriate interrupt and rebuffers the message and
;calls the interrupt handler to output it. If a message has
;successfully been received it sets the appropriate flags to
;Lap Top Module so it can get the message.

RADHAN:
  MOV  DPTR,%RADSTS ;THROUGH TRANSMITTING
  MOVX  A,锝DPTR ;GET COUNTER
ANL A, TXEMPT
JNZ RADINO ; YES CONTINUE

MOV DPTR, #TWATCH ; WATCH DOG TIMER EXPIRED?
MOV A, @DPTR ; YES TURN OFF
JZ RADOA

JMP REEXIT ; NO EXIT
RADINO:

MOV DPTR, #MESINP ; A MESSAGE IN PROCESS
RADOA:

MOVX A, @DPTR ; SEE IF TX IN PROCESS
ANL A, #TRNINP
JZ RADO ; NO CONTINUE

MOV DPTR, #TWATCH ; WATCH DOG TIMER EXPIRED?
MOVX A, @DPTR ; YES TURN OFF
JZ RADOA

JMP REEXIT ; EXIT
RADOA:

MOV DPTR, #RADSTS ; DISABLE TRANSMIT INTERRUPT
MOV A, #TRSDIS
MOVX @DPTR, A

MOV DPTR, # LTRDF ; CLEAR TRANSMIT FLAG
CLR A
MOVX @DPTR, A
MOV DPTR, #MESINP ; AND MESSAGE IN PROCESS
MOVX @DPTR, A

RADO:

MOV DPTR, #PTT_TK ; GET PUSH TO TALK
MOV A, #SETHGH ; SET HIGH
MOVX @DPTR, A

MOV DPTR, #TWATCH ; GET WATCH DOG TIMER COUNTER
MOVX A, @DPTR
JNZ RAD1 ; NO CONTINUE
MOV A, #TWATCH ; YES UPDATE
MOVX @DPTR, A

RAD1:

MOV DPTR, #RDTLTF ; MESSAGE STILL PROCESSING?
MOVX A, @DPTR
JNZ REEXIT ; YES CONTINUE

MOV DPTR, #PORTA ; IS CARRIER ACTIVE SENSE HIGH
MOV A, @DPTR
ANL A, #CARR

JNZ RAD1B ; YES CAN RECEIVE

RAD1B:

MOVX A, #RADSTS ; END OF TEMPORARY: ; DISABLE UART
MOV DPTR, @DPTR, A

CLR A
MOV DPTR, #RCVFLG ; CLEAR RECEIVE FLAGS
MOVX @DPTR, A
MOV DPTR, #TRCVE ; RESET RECEIVE TIMER
MOVX A, @DPTR

JMP RAD2 ; CONTINUE

RAD2:

MOV DPTR, #TRCVE ; RECEIVE TIMER TIMER OUT?
MOVX A, @DPTR ; NO CONTINUE

MOV DPTR, #MESINP ; RECEIVE IN PROCESS
MOVX A, @DPTR
JNZ RAD1A ; YES GO INITIALIZE

rad1a:
MOV DPTR,#RCVFLG ;ALREADY INITIALIZED?
MOVX A,#DPTR
ANL A,#RECIND
JZ RAD1A
MOV DPTR,#TRDRNT ;SEE IF RECEIVING INTERRUPTS
MOVX A,#DPTR
JZ RAD1A ; NO REINITIALIZE
JMP RAD2 ; NO CONTINUE

; CHECK RECEIVE

RAD1A:
MOV DPTR,#RCVFLG
MOV A,#RECIND ;SET RECEIVE INITIALIZED FLAG
MOVX @DPTR,A
MOV DPTR,#MESINP ;CLEAR MESSAGE INPROCESS FLAG
CLR A
MOVX @DPTR,A

;ENABLE INTERRUPT RECEIVE

CALL RADINL ;REINITIALIZE
MOV DPTR,#RADSTS ;ENABLE RECEIVE
MOV A,#RADRS
MOVX @DPTR,A
MOV DPTR,#TRDRNT ;RESET RECEIVE TIMER
MOV A,#VRDRTN
MOVX @DPTR,A
MOV DPTR,#RTILTB ;SET POINTER TO BEG.
MOV R4,DPL ;OF MESSAGE INPUT BUFFER
MOV A,DPH
MOV DPTR,#MINPTR
MOVX @DPTR,A
MOV A,R4
INC DPTR
MOVX @DPTR,A

REEXIT:
JMP REEXIT ;EXIT MODULE

;END OF RECEIVE

;BEGINNING OF TRANSMIT

; SEE IF MESSAGE IS READY TO GO OUT

RAD2:
MOV DPTR,#LRTRDF ;MESSAGE READY TO GO OUT
MOVX A,#DPTR
JZ REEXIT ; NO CONTINUE
MOV DPTR,#RCVFLG ;IS RECEIVE IN PROCESS
MOVX A,#DPTR ;LOOK AT 1ST SYNC CHAR RECEIVED
ANL A,#SC1RCD
JNZ REEXIT ; YES DO NOT TRANSMIT

MOV DPTR,#PORTA1 ;IS CARRIER ACTIVE SENSE HIGH
MOVX A,#DPTR
ANL A,#CARR
JZ RAD2B ;NO GO TRANSMIT IF TIMER EXPIRED?

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;TEMPORARY;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
JMP RAD2B
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;END OF TEMPORARY;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MOV DPTR,#TWATXT ; IS WAIT TIMER SET
MOVX A,#DPTR
JNZ RAD2C ; YES DON'T RESET MAX. WAIT TIMER
MOV DPTR, #MAXTX
MOV A, #VMAXTX
MOVX @DPTR, A

RAD2C:
MOV DPTR, #MAXTX
MOVX A, @DPTR
JZ RAD4

MOV DPTR, #VRNTIM
MOVX A, @DPTR
MOV DPTR, #TWATXT
MOVX @DPTR, A
JMP RECEIX

RAD2B:
MOV DPTR, #TWATXT
WAIT TIMER EXPIRED?
MOVX A, @DPTR
JNZ RECEIX
NO EXIT

SET UP TO TRANSMIT

RAD4:
CALL LOADMG
LOAD MESSAGE IN RADOTB
AND ENABLE INTERRUPTS

MOV DPTR, #RCVFLG
CLR A
MOVX @DPTR, A

MOV DPTR, #TWATCH
GET WATCH DOG TIMER COUNTER
MOV A, #TWATCH
RESET
MOVX @DPTR, A

ASSERT PUSH TO TALK AND TRANSMIT SWITCH

MOV DPTR, #PTT_TK
GET PUSH TO TALK
MOV A, #SETLOW
MOVX @DPTR, A
SET LOWI

MOV DPTR, #RADOTB
GET START ADDRESS
MOV R3, DPL
SAVE LSD'S

MOV DPTR, #STTRAN
GET START OF TRANSMIT BUFFER

PUT SYNC CHARACTERS IN BUFFER

MOV A, #SC1
GET FIRST SYNCH CHARACTER
MOVX @DPTR, A
SAVE
CALL DINSERT
INSERT IN ALL MESSAGES
INC DPTR
INC
MOV A, #SC2
GET SECOND SYNCH CHARACTER
MOVX @DPTR, A
SAVE
CALL DINSERT
INSERT IN ALL MESSAGES
INC DPTR
INC
MOV A, R3
ARE WE DONE
JCNE A, DPL, RAD3
NO JUMP

COPY MESSAGE

MOV R5, #MSGLEN
GET JUST LENGTH OF MESSAGE

RAD6:
MOVX A, @DPTR
GET DATA
INC DPTR
CALL DINSERT
INSERT DATA
DJNZ R5, RAD6
TILL END OF MESSAGE

COMPUTE AND INSERT CHECKSUM

MOV R5, #MSGLEN
GET TOTAL LENGTH OF MESSAGE

MOV DPTR, #RADOTB
GET START OF MESSAGE
CALL CHKADD
ADD CHECKSUM TO ACC
MOVX @DPTR, A
PUT IN MESSAGE BUFFER
CALL DINSERT
INSERT DATA
; SET OUTPUT POINTER

MOV DPTR, #STRTRAN ; GET START OF TRANSMIT BUFFER
MOV R4, DPL
MOV A, DPH
MOV DPTR, #MUTPTR ; GET MESSAGE POINTER
MOVX @DPTR, A ; SAVE MSB
MOV A, R4 ; SAVE LSB
INC DPTR
MOVX @DPTR, A

; ENABLE INTERRUPT TRANSMIT

MOV R6, $XWAIT
RAD3L: MOV R3, $XWAIT5
RAD2LL: MOV R4, $1BH
RAD2LL: NOP
DJNZ R4, RAD2LL
DJNZ R3, RAD2L
DJNZ R6, RAD3L
MOV DPTR, #MESINP ; SET MESSAGE IN PROCESS
MOV A, #TRNINP ; TRANSMIT
MOVX @DPTR, A
CLR EA ; DISABLE ALL INTERRUPTS
CALL RADINL ; REINITIALIZE
MOV DPTR, #RADSTS ; ENABLE RADIO TRANSMIT
MOV A, #RADTRS
MOVX @DPTR, A
SETB EA ; ENABLE INTERRUPTS

REXIT:
RET ; END OF MAIN PROGRAM

; END OF MAIN PROGRAM
$JECT

: ****************************************************:
: ****************************************************:
: * * I N I T I A L I Z A T I O N * * :
: * * ********************************** :
: ****************************************************:
; The following is for the initialization of the Synchronous
; USART

RADINL:

: RESET FOR MODE INSTRUCTION FORMAT

MOV DPTR, #RADSTS ; GET STATUS REGISTER
MOV A, #RADRES ; RESET FOR MODE INSTRUCTION
MOVX @DPTR, A
MOV R7, $3FH ; WAIT A BIT
DJNZ R7, $ ; MODE INSTRUCTION FORMAT
MOV A, #RADMIF ; SET MODE INSTRUCTION FORMAT
MOVX @DPTR, A
MOV R7, $3FH ; WAIT A BIT
DJNZ R7, $ ; EXIT TEST
The following subroutine loads the message in the buffer RADOTB
from the altimeter, Loran Receiver and the nonvolatile EEPROM

```
LOADMG:
 MOV DPLR,#RADOTB ; GET START OF BUFFER
 MOV R3,DPH ; SAVE DPL
 MOV DPTR,#AIRCID ; GET AIRCRAFT ID LOCATION
 MOV R7,#AIRIDN ; GET NUMBER OF DIGITS IN AIRCRAFT ID
 CALL 7DOUT ; OUTPUT THE AIRCRAFT ID.
 MOV DPTR,#PLTBUF ; GET THE LATITUDE
 MOV R7,#PLTLEN ; GET LENGTH FOR LATITUDE
 CALL 7DOUT ; OUTPUT THE LATITUDE
 MOV DPTR,#PLNBUF ; GET THE LONGITUDE
 MOV R7,#PLNLEN ; GET LENGTH FOR LONGITUDE
 CALL 7DOUT ; OUTPUT THE LONGITUDE
 MOV DPTR,#ALTBUF ; GET ALTITUDE BUFFER
 MOV R7,#ALTLEN ; GET ALTITUDE LENGTH
 CALL 7DOUT ; OUTPUT THE ALTITUDE
 MOV DPTR,#SLFFLG ; GET SELFTEST FLAG
 MOVX A,#DPTR ; OUTPUT
 CALL 7HEXOUT ; OUTPUT
 MOVX A,#DPTR ; GET SELFTEST FLAGS
 ORL A,#NOLRDRD ; SET NO LORAN UPDATE
 ORL A,#STRTST ; SET NO MESSAGE TO LAP TOP
 MOV R7,A ; SAVE
 MOV A,#TRRDST ; CLEAR MSG. SENT RADIO
 CPL A
 ANL A,#1FH
 MOVX A,#DPTR,A
 MOV DPTR,#STSBUF ; GET STATUS BUFFER
 MOV R7,#STSLEN ; GET LENGTH OF BUFFER
 CALL LORCON ; OUTPUT LORAN STATUS
 RET ; EXIT SUBROUTINE
```

The following subroutine converts the data in the buffer STSBUF of
length STSLEN and puts the hex characters in the Transmit buffer.

```
LORCON:
 MOV R1,#4 ; GET NUMBER OF BITS TO GO OUT
 MOV R2,#0 ; CLEAR MEMORY
LORCN1:
 MOVX A,#DPTR ; GET CHARACTER
 INC DPTR
 CJNE A,#2DH,LORCN2 ; IS FLAG SET
 CLR C
 JMP LORC2A
 SETB C

LORCN2:
 MOV A,R2
 RLC A
 MOV R2,A
```

DJNZ R7, LORCN3 ; WHEN DONE EXIT
DEC R1
JMP LORCN4

LORCN3:
DJNZ R1, LORCN1 ; CONTINUE TIL BYTE IS SET
CALL BINOUT ; OUTPUT WHEN FULL
JMP LORCON ; AND CONTINUE

LORCN4:
CLR C
RLC A
DJNZ R1, LORCN4 ; CONTINUE TIL BYTE IS SET
CALL BINOUT ; OUTPUT FULL
RET ; EXIT SUBROUTINE

; The following subroutine outputs data at dptr for the number of times found in R7.
R7DOUT:
MO VX A, @D PTR ; GET ID NUMBER
CALL RADBDL ; OUTPUT
INC DPTR
DJNZ R7, R7DOUT ; UNTIL DONE
RET ; EXIT SUBROUTINE

; The following subroutine puts the data in the ACC when called in the RADOTB buffer pointed to by the pointer found in RADOPT
RADBDL:
PUSH DPL ; SAVE DPTR
PUSH DPH
MOV DPH, R3 ; GET NEW DPTR FOR RADOTB
MOV DPL, R4
MOVX @DPTR, A
INC DPTR
MOV R3, DPH
MOV R4, DPL
POP DPH ; RESTORE DATA POINTER
POP DPL
RET ; EXIT SUBROUTINE

; THE FOLLOWING SUBROUTINE CONVERTS THE DATA IN THE ACC TO ASCII AND OUTPUTS IT
HEXOUT:
PUSH ACC
SWAP A ; GET MSB
CALL BINOUT ; OUTPUT IT
POP ACC ; GET LSB
CALL BINOUT ; AND OUTPUT IT
RET

; This subroutine takes the ACC and converts to ASCII and outputs it to the console
BINOUT:
ANL A, $0FH ; STRIP OFF MSB
AJM AL @D PTR, (9, BINOUT) ; GREATER THAT 9
ORL A, $30H ; MAKE ASCII
JMP BINOUT2 ; CONTINUE
BINOUT1:
ADD A, $37H
;MAKE ASCII

BINOUT2:
CALL -RAATLD
;OUTPUT TO BUFFER
;EXIT SUBROUTINE

;THE FOLLOWING SUBROUTINE ADDS UP THE DATA STARTING AT DPTR FOR
;THE CHECKSUM CALCULATION.

CHKADD:
PUSH 1FH
;SAVE R7
PUSH 1EH
;SAVE R6
CLR C
;CLEAR CARRY
CLR A
;CLEAR ACC
MOV R6, A
;CLEAR R6
MOV R7, A
;CLEAR R7

CHKLOP:
MOVX A, @DPTR
;GET DATA
INC DPTR
;INC POINTER
ADDC A, R7
;ADD DATA TO CHECKSUM
MOV R7, A
;SAVE
JNC CHKLP1
;CONTINUE IF CARRY NOT SET
MOV R6, $0FFH
;SET R6

CHKLP1:
DJNZ R5, CHKLOP
;
MOV A, R6
;SEE IF ALL ZERO'S
ORL A, R7
;NO CONTINUE
MOV R7, $0FH
;CHANGE R7

CHKLP2:
MOV A, R7
;GET CHECKSUM
POP 1EH
;GET R6
POP 1FH
;EXIT SUBROUTINE

;THE FOLLOWING SUBROUTINE INSERTS THE DATA AT THE DIFFERENT MESSAGE

;LEVELS TO BE TRANSMITTED TRNMAX NUMBER OF TIMES.

DINSERT:
MOV R6, $TRNMAX
;GET NUMBER OF TIMES TO TRANSMIT
DJNZ R6, DINLOP
;NOT ZERO CONTINUE
JMP DINLP4
;DO NOT INSERT ANY

PUSH DPL
;SAVE DPTR
PUSH DPH
;

DINLOP:
MOV R4, $MSGTH
;GET TOTAL MESSAGE LENGTH

DINLP3:
INC DPTR
;GET NEXT ADDRESS
DJNZ R4, DINLP3
;NOT DONE LOOP
MOVX @DPTR, A
;SAVE IN OUTPUT BUFFER

DJNZ R6, DINLOP
;NOT DONE LOOP

POP DPH
;GET DPTR
POP DPL
;

DINLP4:

RET
TRANSMIT
2. Determine if an error has occurred. If so ALERT RADIO.
3. Determine if the message has completed, if so:
   A. Clear flag (LRTRDF) so that RADIO can enter another message.
   B. Disable interrupts.

RADTIN:
  MOV DPTR,#MESINP ;TRANSMIT IN PROCESS
  MOVX A,#DPTR
  ANL A,#TRANINP
  JNZ TRNINT ;TRANSMIT INTERRUPT
  MO VX A,#DPTR
  ANL A,#RCVINP
  JNZ RDNTX1 ;RECEIVE IN PROCESS
  MOV A,#RADRCS
  JMP RDNTX2 ;YES CONTINUE
RDNTX1:
  MOV A,#RADRCS ;RESET USART
  SET RECEIVE MODE
RDNTX2:
  MOV DPTR,#RADSTS
  MOVX @DPTR,A
  MOV DPTR,#RADDAT ;SET RECEIVE MODE
  MOVX @DPTR,A
  JMP INEXAL ;BAD INTERRUPT EXIT

TRNINT:
  PUSH 1DH ;REG 5
  PUSH 1CH ;REG 4
  MOV DPTR,#EDTRAN ;GET END OF BUFFER
  MOV R5,DPL
  MOV DPTR,#MUTPTR ;GET MESSAGE POINTER
  MOVX A,#DPTR ;MSB
  MOV R4,A ;AND SAVE
  INC DPTR ;GET LSB
  MOVX A,#DPTR ;
  MOV DPL,A ;GET NEW DPTR
  MOV DPH,R4 ;FOR MESSAGE
  CJNE A,1DH,TOUT ;MORE CONT.

;NO MORE DATA QUIT
  MOV DPTR,#RADSTS ;DISABLE TRANSMIT INTERRUPT
  MOV A,#TRSDIS ;
  MOVX @DPTR,A ;
  MOV DPTR,#LRTRDF ;CLEAR TRANSMIT
  CLR A
  MOVX @DPTR,A ;
  MOV DPTR,#MESINP ;CLEAR ALL MESSAGE INPROCESS FLAGS
  CLR A
  MOVX @DPTR,A
  JMP INEXIT
TGUT:

MOVX A,@DPTR ;GET DATA
MOV R5,A ;SAVE
INC DPTR ;GO TO NEXT BYTE
MOV R4,DPL ;SAVE DATA POINTER
MOV A,DPH ;IN MESSAGE POINTER
MOV DPTR,#MUTPTR ;
MOVX @DPTR,A ;
MOV A,R4 ;
INC DPTR ;
MOVX @DPTR,A ;
MOV DPTR,#RADDAT ;OUTPUT DATA
MOV A,R5 ;
MOVX @DPTR,A ;
JMP INEXIT ;AND EXIT

;END OF TRANSMIT INTERRUPT HANDLER

;RECEIVE
; 1. After the interrupt routine RDINTS has set the sync flags
;     this routine is enabled to start receiving the message.
; 2. It will read in and buffer the message.
; 3. The message will be ignored if the checksum is bad.
; 4. Determine end of message, when the message has completed
;    do the following:
;      A. Set flag (RADFIN) to alert RADIO that message has
;         arrived.
;      B. Disable interrupts so that message will not be
;         overrun.

RADRIN:

PUSH 1DH
PUSH 1CH
PUSH 1FH

MOV DPTR,#MESINP ;MESSAGE INPROCESS
MOVX A,DPTR
ANL A,#TRENINP ;TRANSMIT EXIT
JNZ RDITR2 ;

MOV DPTR,#PORTA1 ;GET CHANNEL BUSY OR CARRIER
MOVX A,DPTR ;ACTIVE SENSE
ANL A,#ICARR ;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
JMP TEMP
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
END OF TEMPORARY;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
JZ RDITR1 ;NO DON'T TRY TO RECEIVE
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
TEMP:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
END OF TEMPORARY;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MOV DPTR,#RADSTS ;FRAMING OVERRUN OR
MOVX A,DPTR ;PARITY ERROR
ANL A,#TRSERR
JZ RDINGD ;NO GET DATA

RDITR1:

MOV A,#RADCIS ;REFRESH USRAT
MOV DPTR,#RADSTS
MOVX @DPTR,A
JMP RDITR3

RDITR2:

MOV A,#RADTRS ;REFRESH USRAT
MOV DPTR,#RADSTS
MOVX @DPTR,A

RDITR3:

MOV DPTR,#RADDAT ;GET DATA
MOV A,DPTR ;
JMP INEXIR ;ERROR GO EXIT

;GOOD DATA PROCESS

RDINGD:

MOV DPTR,#TRDRT ;RESET RECEIVE TIMER
MOV  A,@VRDRNT
MOVX @DPTR,A
MOV  DPTR,@RADDAT ;GET DATA
MOVX A,@DPTR ;SAVE
MOV  R5,A
MOV  DPTR,@RCVFLG ;GET RECEIVE FLAGS
CJNE A,$SC1,RCVCK2 ;IS DATA 1ST SYNC CHARACTER
         ;YES SET 1SYNC CHARACTER REC
MOVX A,@DPTR
ORL A,$SC1RCD
MOVX @DPTR,A
RCVCK1:
MOVX A,@DPTR ;SEE IF MESSAGE ALREADY INPROCESS
ANL A,@RINPFG
JNZ RCV12D ;YES CONTINUE
JMP INEXIR ;NO EXIT
RCVCK2:
MOVX A,@DPTR ;GET FLAGS
ANL A,$SC1RCD ;1ST SYNC CHARACTER RECEIVED?
JZ RCVCK1 ;NO CONTINUE
MOV  A,$SC1RCD ;YES CLEAR 1ST REC FLAG
CPL A
MOV  R4,A
MOVC A,@DPTR
ANL A,1CH
MOVX @DPTR,A
MOV  A,R5 ;GET CHARACTER
CJNE A,$SC2,RCVCK1 ;SECOND SYNC CHARACTER?
MOVX A,@DPTR ;YES
ORL A,@RINPFG ;SET IN PROCESS FLAG
MOVX @DPTR,A
MOV  DPTR,$MESINP ;SET RECEIVE MESSAGE INPROCESS
MOV  A,$RCVINP
MOVX @DPTR,A
MOV  DPTR,$TRCVE ;SET RECEIVE TIMER
MOVX @DPTR,A
JMP RCV13A ;CLEAR AND EXIT

;DATA IS GOOD AND RECEIVED SYNC CHARACTERS

RCV12D:
MOV  DPTR,$TRCVE ;SET RECEIVE TIMER
MOV  A,$VRCVE
MOVX @DPTR,A
MOV  DPTR,$MINPTR ;GET MESSAGE POINTER
MOVX A,@DPTR ;MSB
MOV  R4,A
INC DPTR ;LSB
MOVX A,@DPTR ;
MOV  DPL,A ;AND SET IN DPTR
MOV  DPH,R4 ;
MOV  A,R5 ;
CALL PRTCOM ;*****TEMP
MOVX @DPTR,A ;SAVE DATA IN BUFFER
INC DPTR ;INCREMENT POINTER
MOV  A,DPL ;SAVE POINTER
MOVX R4,DPH ;
MOV  DPTR,$MINCKS+1 ;SEE IF AT END OF MESSAGE
CJNE A,DPL,RCVIN4 ;NO CONTINUE

RCV12E:
MOV  R7,$00
MOV  R5,$MSGLEN ;GET CHECKSUM MESSG LENGTH
MOV  DPTR,$RDTLTB ;
CALL CHKADD ;ADD UP CHECKSUM
MOV R5,A ;SAVE CHECKSUM
MOV DPTR,#MINCKS ;GET RECEIVED CHECKSUM
MO VX A,#DPTR ;SEE IF RIGHT
RCVI2F: CJNE A,1DH,RCVIN3 ; NOT RIGHT EXIT
RCVI2K: MOV DPTR,#RDLTIF ;SET MESSAGE IN FLAG
MOV A,#OFFH ;
MO VX @DPTR,A ;
MOV DPTR,#TRCVE ;CLEAR RECEIVE TIMER
CLR A
MO VX @DPTR,A
RCVIN3: MOV DPTR,#RADSTS ;DISABLE ALL INTERRUPTS
MOV A,#TRSDIS
MO VX @DPTR,A
MOV DPTR,#RCVFLG ;CLEAR RECEIVE FLAGS
CLR A
MO VX @DPTR,A
RCVI3A: MOV DPTR,#RTDLTB ;SET POINTER TO BEG.
MOV A,DPL ; OF MESSAGE INPUT BUFFER
MOV R4,DPH ;
RCVIN4: MOV DPTR,#MINPTR ;SAVE POINTER
MOV R5,A ;
MOV A,R4 ;
MO VX @DPTR,A ;
MOV A,R5 ;
INC DPTR
MO VX @DPTR,A ;
INEXIR:
POP 1FH
INEXIT:
POP 1CH
POP 1DH
INEXAL:
RET ;EXIT INTERRUPT

; END

10 REM LORRAN SIMULATOR FEB 23 90 12:13
20 PRINT"ENTER LON DIR"
30 LNS = INPUT$ (1)
40 PRINT "ENTER LONGITUDE (7 DIGITS)"
50 INPUT N
60 PRINT "ENTER LAT DIR"
70 LTS = INPUT$ (1)
80 PRINT "ENTER LATITUDE (6 DIGITS)"
90 INPUT T
100 PRINT "ENTER CHANGE FOR LONGITUDE"
110 INPUT NC
120 PRINT "ENTER CHANGE FOR LATITUDE"
130 INPUT TC
160 OPEN "COM:" FOR OUTPUT AS#1
200 PRINT "LAT ":LTS USING "### #"; CDBL(T)
210 PRINT "LON ":LNS USING "### #"; CDBL(N)
220 IF T <100000 THEN PRINT#1,"LAT ":LTS USING "#### #";CDBL(T)
230 IF T >99999 THEN PRINT#1,"LAT ":LTS USING "#### #";CDBL(T)
240 IF N <1E+06 THEN PRINT#1,"LON ":LNS USING "#### #";CDBL(N)
250 IF N >999999 THEN PRINT#1,"LON ":LNS USING "#### #";CDBL(N)
260 PRINT#1,"WRN SD-----------"
270 FOR I = 0 TO 1000
280 NEXT I
290 LET N=N+NC
300 LET T=T+TC
310 GOTO 200
320 END

$TITLE (LORHAN 8052 BASED)
NAME LORHAN

$VA001 2 Nov 89 ORIGINAL RELEASE

$LAST MODIFIED 23 FEB 90 10:51
$VA002 15 FEB 90 ADDED LORAN STATUS
$VA003 23 FEB 90 CHANGED LORAN METHOD OF UPDATE

; Basic Description of Module
;
; This module will monitor and control the transmitting of messages
; to and from the Loran Receiver. The following is a brief description
; of how this module is organized and the function of each section.

; LORHAN This is the main section or the part that is called from the
; Executive Loop. When the DIN flags are set (see LORRIN) it will
; rebuffer the data in the TLXBUF buffers to the PLXBUF buffers.

; LORRIN This is the receive interrupt handler from the Loran Receiver.
; Messages coming from the Loran Receiver will ignore spaces and
; look for the words "LAT" and "LON" and put the Data in the buffers
; TLXBUF and TLNBUF. When it is through receiving lat. and lon.
; it will set the LATDIN and LONDIN flags for LORHAN.

; LORINL This is the initialization routine for this module. It is
; called once by the Initialization or Selftest module, and is called
; internally by this module if the receive lock up during a lat. or
; a lon. input. This module sets up the CPU UART and timer as well
; as clears the MESINF flags.

$EXIT

***********************************************************************
***********************************************************************

*** P U B L I C S ***

***********************************************************************

PUBLIC LORHAN ; INPUT TO THIS MODULE
PUBLIC LORINL ; INITIALIZATION OF MODULE
PUBLIC LORRIN ; RECEIVE INTERRUPT HANDLER

$EXIT

***********************************************************************

*** E X T E R N A L S ***

***********************************************************************

EXTRN XDATA (LERCNT) ; RECEIVE INTERRUPT COUNT
EXTRN XDATA (TLRRT0) ; RECEIVE TIMEOUT TIMER
; Loran Receiver Interface
EXTRN XDATA (LTRLTF) ; Data ready for Lap Top
; Radio Interface
EXTERN XDATA (LRTRDF) ;Data ready for radio

; POSITION BUFFERS
EXTERN XDATA (PLTBUF,PLNBUF) ;LONGITUDE AND LATITUDE
EXTERN XDATA (TLTBUF,TLNBUF) ;TEMP. LONGITUDE AND LATITUDE
EXTERN NUMBER (PLTLEN,PLNLEN) ;LENGHT OF LATITUDE AND LONGITUDE

; STATUS BUFFER AND LENGTH
EXTERN XDATA (STSBUF) ;STATUS BUFFER
EXTERN NUMBER (STSLLEN) ;STATUS BUFFER LENGTH

; LORAN ACTIVE (DO NOT PROCESS)
EXTERN XDATA (TIRCNT,VTRCNT) ;VALUE & TIMER FOR HOW LONG TO WAIT
; TO TRANSMIT TO RADIO
EXTERN XDATA (TIRCNT,VLRCNT) ;VALUE & TIMER FOR HOW LONG TO WAIT
; TO SEND MESSAGE TO LAPTOP

; SELFTEST INTERFACE
EXTERN XDATA (SLFFLG) ;SELFTEST FLAG
EXTERN NUMBER (WLRRRD) ;NO LORAN UPDATE FOR RADIO
EXTERN NUMBER (WLRLT) ;NO LORAN UPDATE FOR LAPTOP

; MISC
EXTERN NUMBER (TRUE) ;INPUT TRUE

;******************************************************************************
;******************************************************************************
;  ** **  D A T A  ** **
;******************************************************************************
;******************************************************************************

;THIS IS DATA USED INTERNAL TO THIS FILE ONLY

DATA_AREA segment XDATA
PROC_S  segment CODE
RSEG    DATA AREA

MESINP:   DS 01H ;MESSAGE INPROCESS FLAGS
        ; DONE FLAGS MUST BE 10H*INPROCESS FLAGS

; NOTE INPROCESS FLAGS ARE 1ST NIBBLE
LONINP   EQU 01H ;LONGITUDE DATA COMMING IN
LATINP   EQU 02H ;LATITUDE DATA COMMING IN
STSNP    EQU 04H ;STATUS DATA COMMING IN

; NOTE DONE FLAGS ARE ONLY 2ND NIBBLE
LONINTP  EQU 10H*LONINP ;LONGITUDE DATA COMPLETE
LATINTP  EQU 10H*LATINP ;LATITUDE DATA COMPLETE
STSSNTP  EQU 10H*STSNP  ;STATUS DATA COMPLETE

LORIPRT:  DS 02H ;LORAN RECEIVE INPUT POINTER
LORNPCH:  DS 01H ;NUMBER OF CHARACTERS TO READ
FILOLN:   EQU 03H ;LENGTH OF FILO BUFFER
FILODT:   DS FILOLN ;FIRST IN LAST OUT BUFFER
$EJECT

; The following tables are trigger compare tables for Loran
; receiver inputs, they must be backwards from how received:

LATTGR: DB 'TAL'
LONTRG: DB 'NOL'
STSTRG: DB 'NRW'

; CHECK FOR MESSAGE FROM LORAN
MOV DPLTR,#MESINP ;SEE IF MSG COMPL. FROM LORAN
MOVX A,#DPLTR
ANL A,#LONDIN+LATDIN+STS Din ;CHECK FOR BOTH LAT. LON. AND STATU
CJNE A,#LONDIN+LATDIN+STS Din ,CHKRAD ;GOT THEM SO CLEAR
CPL A
MOV R2,A
MOVX A,#DPLTR
ANL A,R2
MOVX @DPLTR,A ;AND SAVE
MOV DPLTR,#SLFFLG ;CLEAR SELFTEST FLAG
MOV A,#NOLRRT ;FOR LORAN
ORL A,#NOLRRD ; NOT RECEIVED
CPL A
MOV R7,A
MOVX A,#DPLTR
ANL A,#IFH
MOVX @DPLTR,A

;REBUFFER DATA FOR REST OF MODULES
;LONGITUDE
MOV DPLTR,#PLNBUF ;GET START OF DESTINY
MOV R0,DPL
MOV R2,DPH
MOV DPLTR,#TLNBUF ;GET START OF SOURCE
MOV    R7, #PINLEN ;GET LENGTH
CALL    TRNDAT ;TRANSFER DATA

;LATITUDE

MOV    DPTR, @PLTBUF ;GET START OF DESTINY
MOV    R0, DPL
MOV    R2, DPH
MOV    DPTR, @TLTBUF ;GET START OF SOURCE
MOV    R7, #PLTLEN ;GET LENGTH
CALL    TRNDAT ;TRANSFER DATA

; TIME TO SEND MESSAGES TO RADIO

CHKRAD:

MOV    DPTR, #VRTCNT ;FIRST CHECK TO SEE IF DISABLED
MOVX   A, @DPTR
MOV    R3, A ; SAVE
JZ     CHKRAD ; DISABLED GO CHECK LAPTOP

MOV    DPTR, #ITRCNT ;TIMER EXPIRED?
MOVX   A, @DPTR
ANL    PSW, #18H ; CLEAR CARRY ETC
DA     A ; DECIMAL ADJUST
MOVX   @DPTR, A
JNZ    CHKRAD ; NO CONTINUE
MOV    A, R3
MOVX   @DPTR, A ; RESET TIMER
MOV    A, #TRUE
MOVX   DPTR, #LRTLTF ;SET FLAG FOR MESSAGE TO RADIO
MOVX   @DPTR, A

; SEE IF MESSAGE TO LAP TOP COMPUTER

CHKLAP:

MOV    DPTR, #VLTRCNT ;FIRST CHECK TO SEE IF DISABLED
MOVX   A, @DPTR
MOV    R3, A ; SAVE
JZ     INPCHK ; DISABLED GO CHECK LAPTOP

MOV    DPTR, #TLRCNT ;TIMER EXPIRED?
MOVX   A, @DPTR
ANL    PSW, #18H ; CLEAR CARRY ETC
DA     A ; DECIMAL ADJUST
MOVX   @DPTR, A
JNZ    INPCHK ; NO CONTINUE
MOV    A, R3
MOVX   @DPTR, A ; RESET TIMER
MOV    A, #TRUE
MOVX   DPTR, #LRTLTF ;SET FLAG FOR MESSAGE TO LAP TOP
MOVX   @DPTR, A

INPCHK:

; CHECK TO SEE IF INPROCESS TO LONG

MOV    DPTR, #MESINP ; SEE IF INPROCESS
MOVX   A, @DPTR
ANL    A, #LATINP+LONINP+STSINP ;LOOK AT LAT, LON & STATUS
JZ     LOREXT ; NOT INPROCESS EXIT

MOV    DPTR, #TLRRTO ; SEE IF INPROCESS TIMER HAS
MOVX   A, @DPTR ; EXPIRED
JNZ    LOREXT ; NO EXIT

CALL    LRINL3 ; REINITIALIZE LORAN RECEIVER ; HANDLER INPUT

LOREXT:

RET

$EJECT
This is the initialization routine for this module. It is called once by the Initialization or Selftest module, and is called internally by this module if the receive lock up during a lat. or a lon. input. This module sets up the CPU UART and timer as well as clears the MESINP flags.

The following is for the initialization of the serial port used for transmitting to the computer. It is initialized, and enabled.

Baud Rate - 9600
Start Bits - 1
Data Bits - 8
Stop Bits - 2
Parity - None

LORINL:
MOV A,$'9'
MOV R7,#PLLEN ; GET LONGITUDE LENGTH
MOV DPTR,#PLNBUF ; FILL WITH '9' S

LRINL1:
MOVC @DPTR,A ; SAVE
INC DPTR
DJNZ R7,LRINL1 ; LOOP UNTIL DONE

MOV R7,#PLTLEN ; GET LATITUDE LENGTH
MOV DPTR,#PLTBUF ; FILL WITH '9' S

LRINL2:
MOVC @DPTR,A ; SAVE
INC DPTR
DJNZ R7,LRINL2 ; LOOP UNTIL DONE

LRINL3:
MOV DPTR,#MESINP ; CLEAR INPROCESS FLAGS
CLR A
MOVC @DPTR,A

RET ; EXIT INITIALIZATION

$EJECT

This subroutine transfers the data at the DPTR to the destiny in R0,R2 for the length found in R7.

TRNDAT:
MOVX A,#DPTR ; GET SOURCE
INC DPTR ; GO TO NEXT DATA
MOV R1,DPL ; SAVE SOURCE
MOV R3,DPH
MOV DPL,R0
MOV DPH,R2
MOVC @DPTR,A ; RETRIEVE DESTINY
INC DPTR
MOV R0,DPL ; SAVE DATA
MOV R2,DPH
MOV DPL,R1
MOV DPH,R1 ; SAVE DESTINY
This subroutine determines if the last R6 number of characters
match the trigger value found at the Code address or the DPTR.
If so Acc = 0, if not Acc = OFFH

FILOCK:
PUSH 1BH ; SAVE R3
PUSH DPH ; SAVE DPTR
PUSH DPL
MOV DPH,#FILODT ; GET DATA FROM LAST INTERRUPTS
MOV R5,DPH
MOV R7,DPL

FILOLP:
CLR A
POP DPL
POP DPH
MOV A,@A+DPTR ; GET DATA FROM TABLE
MOV R3,A ; SAVE IN REG 3
INC DPH
PUSH DPH ; SAVE DPH
PUSH DPL

MOV DPL,R7 ; GET FILO DATA POINTER
MOV DPH,R5 ; GET FILO DATA
MOVX A,@DPTR
INC DPTR
MOV R5,DPH
MOV R7,DPL

CJNE A,1BH,FILON ; NOT EQUAL GO EXIT

DJNZ R6,FILOLP ; CLEAR ACC BECAUSE IT IS EQUAL

JMP FILOXT ; AND EXIT

FILOXT:
MOV A,$0FFH ; SET ACC NOT EQUAL

POP DPL
POP DPH ; RESTORE DPTR
POP 1BH ; RESTORE R3
RET ; EXIT SUBROUTINE

$EJECT

**********************************************************************
**********************************************************************
**  INTERRUPT HANDLER  **
**  ******************************************

This interrupt handler handles the data coming into the CPU from the Loran Receiver.

LORRN:
CLR EA ;DISABLE INTERRUPTS
PUSH PSW ;SAVE PROGRAM STATUS WORD
PUSH ACC ;SAVE ACCUMULATOR
PUSH DPH ;SAVE DPH
PUSH DPL
PUSH 1FH ;SAVE R7
PUSH 1EH ;SAVE R6
PUSH 1DH ;SAVE R5
PUSH 1CH ;SAVE R4
133
MOV DPTR,#LRRCNT ;INC CUNT
MOVX A,#DPTR ;FOR INTERRUPTS
INC A
MOVX @DPTR,A

;SEE IF RECEIVE OR TRANSMIT INTERRUPT
JB RI,LORRN1 ;CONTINUE IF RECEIVE INTERRUPT
JMP LORRX

LORRN1:
;
READ DATA AND PUT IN FIRST IN LAST OUT BUFFER
MOV DPTR,#FILODT ;GET FILO 3 POS BUFFER
MOV A,SBUF ;GET COM PORT DATA
MOV R5,A ;AND SAVE FOR LATER
MOV R7,A ;AND SAVE FOR FILO BUFFER
MOV R6,#FIOLN ;GET NUMBER OF CHARACTERS IN BUFFER

FIOLN:
MOVX A,#DPTR ;GET DATA IN FIRST POSITION
MOV R4,A ;SAVE
MOV A,R7 ;GET NEW DATA
MOVX @DPTR,A ;SAVE
MOV 1FH,R4 ;PUT DATA FROM R4 IN TO R7
INC DPTR
DJNZ R6,FIOLN ;CONTINUE FOR WHOLE BUFFER

;CHECK TO SEE IF A MESSAGE IS ALREADY IN PROCESS
MOV DPTR,#MESINP ;MESSAGE IN PROCESS
MOVX A,#DPTR
ANL A,#LATINP+LOINP+STINP ;CHECK LAT LON AND STATUS
JZ LATCHK ;NO GO CHECK TO SEE IF COMMING

;THE FOLLOWING READS IN THE DATA FOR A MESSAGE INPROCESS
MOV A,R5 ;GET DATA, IS IT A SPACE
CJNE A,' ',DATSAV ;NO GO SAVE DATA
JMP LORRX ;YES EXIT

DATSAV:
MOV DPTR,#LORIPT ;GET DATA POINTER
MOVX A,#DPTR ;GET DPH
MOV R7,A ;SAVE
INC DPTR ;GET DPL
MOVX A,#DPTR
MOV DPL,A

MOV DPH,R7 ;SET UP DPTR
MOV A,R5 ;STORE DATA
MOVX @DPTR,A

INC DPTR ;INC. POINTER AND STORE
MOV R7,DPL
MOV A,DPH
MOV DPTR,#LORIPT ;SAVE
MOVX @DPTR,A
MOV A,R7
INC DPTR
MOVX @DPTR,A

MOV DPTR,#LORNCN ;NUMBER OF CHARACTORS: = 0
MOVX A,#DPTR ;AFTER DEC.
DEC A
MOVX @DPTR,A

JNZ LORRX ;NO CONTINUE

MOV DPTR,#MESINP ;GET WHICH MESSAGE IT IS
MOVX A,#DPTR
ANL A,#FOFH ;SAVE ANY DONE FLAGS
MOV R7,A ;IN R7
MOVX A,@DPTR ;GET FLAGS AGAIN
ANL A,#0FH ;SAVE ONLY INPROCESS FLAGS
SWAP A
ORL A,R7 ;GET ALL FLAGS
MO VX @DPTR,A ;AND SAVE
JMP LORRXT ;EXIT MODULE

;CHECK TO SEE IF A MESSAGE IS IN

LATCHK:
MOV DPTR,#LATTRG ;GET LATITUDE TRIGGER
MOV R6,#FIL0LN ;GET NUMBER OF CHARACTERS TO COMPARE
CALL FILOCK ;CHECK TO SEE IF LATITUDE
JNZ LONCH

;IS LATITUDE MESSAGE SET FLAGS AND EXIT
MOV R5,#LATNP ;GET LATITUDE IN PROCESS MSG.
MOV R7,#FILLEN ;GET MESSAGE LENGTH
MOV DPTR,#FILTBUF ;GET POINTER FOR OUTPUT
JMP CHKEXT ;GO QUIT

LONCH:
MOV DPTR,#LONTRG ;GET LONGITUDE TRIGGER
MOV R6,#FIL0LN ;GET NUMBER OF CHARACTERS TO COMPARE
CALL FILOCK ;CHECK TO SEE IF LATITUDE
JNZ STSCHK ;NO GO CHECK STATUS

;IS LONGITUDE MESSAGE SET FLAGS AND EXIT
MOV R5,#LONNP ;GET LONGITUDE IN PROCESS MSG.
MOV R7,#FILLEN ;GET MESSAGE LENGTH
MOV DPTR,#FILNBUF ;GET POINTER FOR OUTPUT
JMP CHKEXT ;GO QUIT

STSCHK:
MOV DPTR,#STSTRG ;GET STATUS TRIGGER
MOV R6,#FIL0LN ;GET NUMBER OF CHARACTERS TO COMPARE
CALL FILOCK ;CHECK TO SEE IF STATUS
JNZ LORRXT ;NO GO EXIT

;IF STATUS GO SET FLAGS AND EXIT
MOV R5,#STSNP ;GET STATUS IN PROCESS MSG.
MOV R7,#STSLLEN ;GET MESSAGE LENGTH
MOV DPTR,#STSBUF ;GET POINTER FOR OUTPUT

CHKEXT:
MOV R6,#DPL ;SAVE DPTR
MOV A,DPH
MOV DPTR,#LORIPT ;IN LORAN INPUT POINTER
MO VX @DPTR,A
INC DPTR
MOV A,R6
MO VX @DPTR,A

MOV DPTR,#LORNCH ;STORE # OF CHAR. IN CHAR BUFFER
MOV A,R7
MO VX @DPTR,A

MOV DPTR,#MESNP ;SET MESSAGE INPROCESS
MOV A,DPTR
MO VX @DPTR,A
ORL A,R5
MO VX @DPTR,A

TIMSET:
MOV DPTR,#TLRRTO ;SET LORAN GOOD MESSAGE TIMER
MOV A,#VLRRT0
MO VX @DPTR,A

LORRXT:
CLR RI ;CLEAR RECEIVE INTERRUPT
; CLEAR TRANSMIT INTERRUPT IF ANY
; ENABLE INTERRUPTS

; RESTORE R4
; RESTORE R5
; RESTORE R6
; RESTORE R7
; RESTORE DPTR
; RESTORE ACCUMULATOR
; RESTORE PROGRAM STATUS WORD
; ENABLE INTERRUPTS

END

; TITLE (ALTHAN 8052 BASED)
; NAME ALTHAN

; ORIGIONAL RELEASE 12 JAN 90 VERSION A001
; LAST MODIFIED 02 FEB 90 10:49

; VA001 12 JAN 90

; Basic Description of Module
; +note+ This module and the label ALTLEN must change if the number
; ALTLEN is changed from 3.
; This module gets the 9 bit input from the Altimeter multiplies it times
; 3 to and adds to the base of the table to get the 3 digit ASCII code in
; the table ALTDB. It then puts the three digit ASCII code in the buffer
; ALTUD for use by other modules.

PUBLIC ALTHAN ; Input to this module

; EJECT

; EXTRN XDATA (ALTBUF) ; ADDRESS FOR ALTITUDE
EXTRN XDATA (ALTINH) ; ALTIMETER INHIBIT
EXTRN NUMBER (PORTA1, PORTB1) ; ALTITUDE INPUTS
EXTRN NUMBER (ALT5IN) ; 9 INPUT ALTIMETER

; MACROS

; DEFINE BYTE WITH LISTING
## ALTATTAB

### CODE

- **DBE:** (998998-1098-0898-0998-0998-03-05-04)
- **DBE:** (998998-1000-0122-9898-01989860720502)
- **DBE:** (02399802499898018202001922998021998)
- **DBE:** (99800861098100988319988010715014)
- **DBE:** (01289801499898067165062639980640999)
- **DBE:** (99805860059062998606199898048005049)
- **DBE:** (0952998051998980570555036599805499)
- **DBE:** (998023983020002399803199989803703092499999)
- **DBE:** (032998034999980470450450439980444999)
- **DBE:** (99803504039042998041998998117414514)
- **DBE:** (143998114999981381011998129999991498999)
- **DBE:** (99812810132999813139998137135136)
- **DBE:** (1339981349999810281099112998111199)
- **DBE:** (9981171151613199981149999812712512)
- **DBE:** (123998124999981181011912999812199989)
- **DBE:** (9980680706097299807919989807705076)
- **DBE:** (07399807499998087050808399808499)
- **DBE:** (998078080079829988019989810710506)
- **DBE:** (103998104999990910099102998101998)
- **DBE:** (998086890909029980919989809709509)
- **DBE:** (09399809499998070350360399830499)
- **DBE:** (99829930029930299301998982829928)
- **DBE:** (2929982919998982729252962998294999)
- **DBE:** (99829989269998287899827219989827725276)
- **DBE:** (2739982749999828725286283998284999)
- **DBE:** (998278208278982848998268230229)
- **DBE:** (23299823199998237235262399623499)
- **DBE:** (998247245246242499898282424039)
- **DBE:** (2429982419998982672652626399826499)
- **DBE:** (99825826206296299826199989928250249)
- **DBE:** (25299825219998252752556599989954999)
- **DBE:** (9981481501491529981509998915155156)
- **DBE:** (1539981549999816716516613998164999)
- **DBE:** (99815816015916299816199989981718518)
- **DBE:** (153998184999981781801782998981818999)
- **DBE:** (9981517016917299817199899817175176)
- **DBE:** (17399817499998272252252399824999)
- **DBE:** (99821222021229982219989820210209)
- **DBE:** (2129982119998982172521213998214999)
- **DBE:** (99818819018919998199981719751916)
- **DBE:** (1399991949999880720527020062095049)
- **DBE:** (99819820091992099820199898627625262)
- **DBE:** (62399862499998616826016299862159)
- **DBE:** (998068610609129999898616715616)
- **DBE:** (639998614999898588950958959929898591999)
- **DBE:** (998597959565939989594999898010760506)
- **DBE:** (603998604999989866005996298980610999)
- **DBE:** (9985485505495529985519989985755555)
- **DBE:** (5539985499999856756565653998564999)
- **DBE:** (9989558605596299856199898587585565)
- **DBE:** (5839985849999857860579829898581999)
- **DBE:** (998568576565729985719989857755576)
- **DBE:** (57399857499999999846847046972998471999)
$EJECT

;******************************************************************************;
;                          PROGRAM                                   ;
;******************************************************************************;

;The following gets the 11 bit input from the altimeter and puts it in the registers R6 and R7. The most significant bit is in bit 2 of R6 in descending order, the eight in descending order in R7.

ALTHAN:

; See if altimeter inhibit is on
MOV DPTR,#ALTINH
MOVX A,@DPTR
JZ ALTHN1
JMP ALTEXT

ALTHN1:

; The following reads and formats the altimeter inputs
MOV DPTR,#PORTA1
MOVX A,@DPTR
CPL A
MOV R6,A
MOV DPTR,#PORTB1
MOVX A,@DPTR
CPL A
MOV R7,A

; The following conditions the data
MOV A,R6
ANL A,#ALT9IN
MOV R6,A
JZ GET_DATA                ; CONTINUE IF TOTAL # < 1024
MOVR5,#'9'
MOVR6,#'9'
MOVR7,#'9'
JMPSTORE_DATA             ; GO SEND ERROR

; The following checks adds R6 + R7 to DPL three times, then gets
; the 3 digit altitude from the table and stores it in the buffer ALTITUDE.

GET_DATA:
MOVDPTR,#ALTTAB          ; GET TABLE ADDRESS
MOV R3,#3               ; GET HOW MANY TIMES TO REPEAT

GET_DAT1:
MOV A,R7               ; GET LEAST SIG PART OF ADDRESS
ADD A,DPL
MOV DPL,A
MOV A,R6               ; ADD AND STORE
ADDC A,DPH
MOV DPH,A
DJNZR3,GET_DAT1         ; ADD THREE TIMES TO LOOP

CLR A                   ; GET NEXT MOST SIG DIGIT
MOVC A,#A+DPTR          ; AND ADD W/CARRY TO DPH
MOV R5,A                ; GET MOST SIG DIGIT
INC DPTR
CLR A                   ; AND SAVE
MOVC A,#A+DPTR          ; GET MIDDLE DIGIT
MOV R6,A                ; AND SAVE
INC DPTR
CLR A                   ; GET LEAST SIG DIGIT
MOVC A,#A+DPTR          ; AND SAVE
MOV R7,A

STORE_DATA:
; THE FOLLOWING STORES THE DATA FOR THE RADIO AND
; THE LAPTOP COMPUTER

MOVDPTR,#ALTBUFFS       ; GET OUTPUT ADDRESS
MOV A,R5                ; GET MOST SIG DIGIT
MOVX @DPTR,A            ; OUTPUT
INCDPTR                 ; GET NEXT ADDRESS
MOV A,R6                ; GET MOST SIG DIGIT
MOVX @DPTR,A            ; OUTPUT
INCDPTR                 ; GET MOST SIG DIGIT
MOV A,R7                ; OUTPUT
MOVX @DPTR,A

ALTEXT:
RET                     ; EXIT MODULE

END

TITLE (LAPHAN 8052 BASED)
NAME LAPHAN

;VA001 ORIGIONAL RELEASE
;STARTED 16 OCT 89

; LAST CHANGE VA005 21 MAY 90 16:13

;VA002 14 FEB 90  ADDED LORAN STATUS
;                   CHANGED RESET
;VA003 23 FEB 90  CHANGED LORAN METHOD OF UPDATE
;VA004 15 MAY 90  ADDED RECEIVE LED
;                   RESET TRANSMIT TIMER WHEN RECEIVE
;VA005 21 MAY 90  CHANGED RESET MESSAGE
; Basic Description of Module
;
; MESSAGES IN:
;
; This module will interface with the Lap Top Computer, both transmit
; and receive. When LAPCOM is called it will put the character in the
; ACC in the transmit buffer and begin transmitting if not already
; transmitting. If a reset message "R" is received from the computer,
; this module will set the NWDRST flag which will cause the watchdog
; to expire and reset the system. If a Time message "T" is received
; the VTMCNT value for the TIMCNT counter will be adjusted. This counter
; reflects how many counts must expire before the location data goes to
; the radio and to the Lap Top computer. This module will be responsible
; for generating the $ message to the Computer. This message will be sent
; just after initialization.
;
; MESSAGES OUT:
;
; From Loran Receiver:
;
; This module will monitor the flag LATOFT to see if a message is to go to
; the Lap Top Computer, then it will send the start bracket and the message
; found at AINCID, PLBN, PLNBUF, ALTBUF, Data-V-Com flags and Loran Status
; insert the spaces and then send the check sum and End Bracket.
;
; From Radio:
;
; This module will monitor the RDTLTF flag when it is set it will send the
; message found at RDTLTFB and add a carriage return.

$EJECT

; ******************************************************
; ******************************************************
; **        PUB LiCS       **
; **        **
; ******************************************************

PUBLIC LAPHAN ;INPUT TO THIS MODULE
PUBLIC LAPINL ;INITIALIZATION OF MODULE
PUBLIC LAPRIN ;RECEIVE INTERRUPT HANDLER
PUBLIC LAPTIN ;TRANSMIT INTERRUPT HANDLER

$EJECT

; ******************************************************
; ******************************************************
; **        E X T E R N A L S     **
; **        **
; ******************************************************

EXTERN CODE (PRTCOM) ;SEND TO PRINTER
EXTERN NUMBER (LAPSTS,LAPDAT) ;USART STATUS AND DATA
EXTERN NUMBER (RECVON,RECVOF) ;COMMAND INSTRUCTIONS
EXTERN NUMBER (TRANON,TRANOF) ;FOR RECEIVE AND TRANSMIT
EXTERN NUMBER (RXRDY) ;RECEIVE READY
EXTERN NUMBER (TARDY,TXEMPT) ;TRANSMIT READY/EMPTY
EXTERN XDATA (LAPRCT) ;RECEIVE INTERRUPT COUNT
EXTERN XDATA (LAPCCT) ;TRANSMIT INTERRUPT COUNTER
EXTERN XDATA (RERUNA) ;RESET AND RERUN
EXTERN NUMBER (RERUNV) ; RESET VALUE
EXTERN XDATA (NWDRST) ;IGNORE WATCH DOG RESET
EXTERN XDATA (TLPRTO) ;RECEIVE TIMEOUT TIMER
EXTERN XDATA (TLPART) ;UART REFRESH TIMER
; LORAN RECEIVER INTERFACE
EXTRN XDATA (LRCTLF) ; DATA READY FOR LAP TOP COMPUTER
EXTRN XDATA (LPIBUF,LPINBUF) ; LATITUDE AND LONGITUDE BUFFERS
EXTRN NUMBER (LPILEN,LPINLEN) ; LATITUDE AND LONGITUDE LENGTH
EXTRN XDATA (LSTBUF) ; LORAN STATUS BUFFER
EXTRN NUMBER (LSTLEN) ; LORAN STATUS BUFFER LENGTH

; ALTIMETER INTERFACE
EXTRN XDATA (ALTBUFF) ; ALTIMETER DATA
EXTRN NUMBER (ALTLLEN) ; ALTIMETER DATA LENGTH

; SPACES FOR RADIO AND LORAN MESSAGE
EXTRN NUMBER (LATSPC)

; RADIO INTERFACE
EXTRN XDATA (RDYTLF,RTYTLB,RTYLTE)

; MESSAGE DEFINITION
EXTRN XDATA (AIRCID) ; AIRCRAFT ID IN NONVOLATILE RAM
EXTRN NUMBER (AIRIDN) ; LENGTH OF AIRCRAFT ID
EXTRN NUMBER (RSTSPC) ; NUMBER OF SPACES FOR RESET MESSAGE
EXTRN NUMBER (MSGSTOT) ; MESSAGE LENGTH

; SELFTEST INTERFACE
EXTRN XDATA (SLFFLG) ; SELFTEST FLAG
EXTRN NUMBER (NOLRIT) ; NO LORAN UPDATE FOR LAPTOP
EXTRN NUMBER (TRDST) ; NOT TRANSMITTED TO RADIO
EXTRN NUMBER (TRDST) ; NOT TRANSMITTED TO LAPTOP
EXTRN NUMBER (OUTFLG) ; NOT ACCEPTING OTHER AIRCRAFT MSG'S
EXTRN XDATA (TRCLED) ; RECEIVE TIME ON

; MISC.
EXTRN NUMBER (CR)
EXTRN NUMBER (ENDBRK) ; END BRACKET
EXTRN NUMBER (STTBRK) ; START BRACKET

******************************************************************************

******************************************************************************

******************************************************************************

******************************************************************************

; THIS IS DATA USED INTERNAL TO THIS FILE ONLY
DATA_AREA
PROG_S
RSEG DATA_AREA

XTDPO: DS 2 ; OUTPUT POINTER FOR BUFFER
XTDPI: DS 2 ; INPUT POINTER FOR BUFFER
CHKDP: DS 2 ; CHECK SUM POINTER
XTDDBF: DS 500 ; DATA BUFFER FOR BUFFER
XTDEND: DS 1 ; END OF BUFFER
RFMDPT: DS 2 ;RECEIVE POINTER FROM LAPTOP
LTTDVB: DS 4 ;MESSAGE BUFFER FROM LAPTOP COMPUTER
LTDVE: DS 1 ;ENT OF LAPTOP BUFFER
RCVINT: DS 1 ;PROPER RECEIVE MESSAGE BEGIN
TRNINT: DS 1 ;TRANSMIT IN PROCESS
RSTMSG: DS 1 ;RESET OR LP MESSAGE SENT
RDCCMN: DS 1 ;LAST USAR COMMAND

*****************************************************************************
*****************************************************************************
** EQUATES **
*****************************************************************************
*****************************************************************************

VRFDTE EQU 12 ;REINITIALIZE AFTER 3 SECONDS
VDUART EQU 8 ;USAR REFRESH TIMER
VRCLD EQU 04 ;RECEIVE LED ON TIME

$EJECT
*****************************************************************************
*****************************************************************************
** MACROS **
*****************************************************************************
*****************************************************************************

;JUMP (LONG JUMP) IF A> CDATA

%*DEFINE (JAG (CDATA,DEST))LOCAL LABEL(
  PUSH ACC
  CLR C
  SUBB A,%CDATA
  JZ %LABEL
  JC %LABEL
  POP ACC
  JMP %DEST
%

%LABEL:
  POI ACC
)

$EJECT
*****************************************************************************
*****************************************************************************
*****************************************************************************
** PROGRAM **
*****************************************************************************
*****************************************************************************

RSEG PROG_S

LAPHAN:
;THE FOLLOWING IS TO REFRESH BAUD RATE IF NECESSARY

MOV DPTR,%TRNINT ;TRANSMIT IN PROCESS
MOVX A, @DPTR ;
JZ REFREC ; NO GO REFRESH RECEIVE
MOV DPTR, @LAPSTS ;GET STATUS
MOVX A, @DPTR
ANL A, #$TXEMPT
JNZ REFREC ; NO CONTINUE
MOV DPTR, #RDDCMN ; GET PAST STATUS
MOVX A, @DPTR
ORL A, #$TRANON
MOVX @DPTR, A
MOV DPTR, #LAPSTS ; REFRESH USART
MOVX @DPTR, A

REFREC:
; SEE IF NEED TO REFRESH USART
MOV DPTR, #TLPRTO ; HAS MESSAGE TIMED OUT
MOVX A, @DPTR
JNZ LAPLB : NO CONTINUE
MOV DPTR, #RCVINV ; RECEIVE IN PROCES:
MOVX @DPTR, A
JZ LAPLB : NO CONTINUE
MOV DPTR, #RDDCMN ; GET PAST STATUS
MOVX A, @DPTR
ORL A, #$RECVON
MOVX @DPTR, A
MOV DPTR, #LAPSTS ; REFRESH RECEIVE
MOVX @DPTR, A
CALL LPRINL ; REINITIALIZE

LAPLB:
; SEE IF RESET OR # MESSAGE NEEDS TO GO OUT
MOV DPTR, #RERUNA ; GET RERUN ADDRESS
MOVX A, @DPTR
CLJE A, #RERUNV, LAPLOR ; NOT READY
MOV DPTR, #RSTMSG ; FLAG SET MESSAGE HAS GONE OUT
MOVX A, @DPTR
JNZ LAPLOR
CPL A ; MAKE ACC FF
MOVC @DPTR, A ; SET RESET MESSAGE FLAG
CALL RSTOUT ; SEND OUT RESET MESSAGE

; THE FOLLOWING CHECKS TO SEE IF MESSAGES ARE READY TO
; GO TO THE LAPTOP COMPUTER.

LAPLOR:
CLR EA ; DISABLE INTERRUPTS
MOV DPTR, #LRTLTF ; MESSAGE FROM LORAN RECEIVER
MOVX A, @DPTR
JZ LAPRAD
CLR A
MOVX @DPTR, A ; YES CLEAR FLAG
MOV DPTR, #XTODPI ; SAVE POINTER FOR CHECKSUM
MOVX A, @DPTR
MOV R0, A
INC DPTR
MOVX A, @DPTR
MOV R3, A
MOV A, $STTBK ; SEND START BRACKET
CALL LAPCOM
MOV DPTR, #AIRCID ; GET AIRCRAFT ID LOCATION
MOV R7, #AIRIDN ; GET NUMBER OF DIGITS IN AIRCRAFT ID
CALL R7DOUT ; OUTPUT THE AIRCRAFT ID.
MOV DPTR,#PLTBUF
MOV R7,#PLTLEN
CALL R7DOUT
; GET THE LATITUDE
; GET LENGTH FOR LATITUDE
; OUTPUT THE LATITUDE

MOV DPTR,#PLMBUF
MOV R7,#PLMLLEN
CALL R7DOUT
; GET THE LONGITUDE
; GET LENGTH FOR LONGITUDE
; OUTPUT THE LONGITUDE

MOV DPTR,#ALTBUF
MOV R7,#ALTLEN
CALL R7DOUT
; GET ALTITUDE BUFFER
; GET ALTITUDE LENGTH
; OUTPUT THE ALTITUDE

MOV DPTR,#SLFFLG
MOVX A,#DPTR
CALL HEXOUT
; GET SELTEST FLAG
; OUTPUT

MOVX A,#DPTR
CALL HEXOUT
; GET SELTEST FLAGS

ORL A,#NOLALT
ORL A,#TRRDST
MOV R7,A
; SET NO LORAN UPDATE
; SET NO MESSAGE TO RADIO
; SAVE

MOV A,#TRLTST
CPL A
ANL A,#1FH
MOVX @DPTR,A
; CLEAR MSG. SENT LATOR

MOV DPTR,#STSBUF
MOV R7,#STSLLEN
CALL LORCON
; GET STATUS BUFFER
; GET LENGTH OF BUFFER
; OUTPUT LORAN STATUS

MOV A,#'
MOV R7,#LATSPC
; GET A SPACE
; GET HOW MANY TO OUTPUT

CALL LAPCOM
; OUTPUT

DJNZ R7,LPLRLP
; ALL OF THEM

MOV R5,#MSGTOT-3
; GET TOTAL LENGTH OF MESSAGE

MOV DPTR,#XTDEND
MOV R4,DPL
; GET END OF BUFFER
; AND SAVE

MOV R6,DPH

MOV DPH,RO
; GET START OF MESSAGE

MOV DPL,RO
CALL CHKADD
; ADD CHECKSUM TO ACC
 CALL HEXOUT
; PUT IN BUFFER

MOV A,#ENDBRK
CALL LAPCOM
; OUTPUT CARRIAGE RETURN

LAPRAD:

SETB EA
; ENABLE INTERRUPTS

; MESSAGE FROM RADIO RECEIVER

MOV DPTR,#RDLTTF
MOVX A,#DPTR
JZ LAPEXT
CLR A
MOVX @DPTR,A
; YES CLEAR FLAG

MOV DPTR,#TRCLED
MOV A,#VRCLED
MOVX @DPTR,A
; SET LED TIMER

MOV DPTR,#VRTCNT
MOV A,#DPRTR
MOVX @DPTR,A
; GET WAIT COUNT

MOV A,#DPRTR
MOV DPTR,#VRTCNT
; DIVIDE BY 2
MOV @DPTR,A
; AND RESET OUT

MOV DPTR,#SLFFLG
MOVX A,#DPTR
; MESSAGES ON
ANL A, $OUTFLG
JNZ LAPEXT ; NO CONTINUE
CLR EA ; DISABLE INTERRUPTS
MOV DPTR, $XTODPI ; SAVE POINTER FOR CHECKSUM
MOVX A, @DPTR
INC DPTR
MOVX A, @DPTR
MOV R1, A
MOV A, #STTBRK ; SEND START BRACKET
CALL LAPCOM
MOV DPTR, #RDTLTE ; GET END OF MESSAGE
MOV R7, DPL ; AND SAVE
DEC R7 ; DON'T GET CHECKSUM
MOV DPTR, #RDTLTB ; GET START OF MESSAGE
RADLOP:
MOVX A, @DPTR
CALL LAPCOM ; OUTPUT TO BUFFER
INC DPTR
MOV A, DPL
CJNE A, #1FH, RADLOP ; NO CONTINUE
MOV A, #'
MOV R7, #LATSPC ; GET A SPACE
MOV R7, #LATSPC ; GET HOW MANY TO OUTPUT
LPRDLP:
CALL LAPCOM ; OUTPUT
DJNZ R7, LPRDLP ; ALL OF THEM
MOV R5, #MSGTOT-3 ; GET TOTAL LENGTH OF MESSAGE
MOV DPTR, #XTDEND ; GET END OF BUFFER
MOV R4, DPL
MOV R6, DPH
MOV DPH, R0
MOV DPL, R1
CALL CHKADD ; ADD CHECKSUM TO ACC
CALL HEXOUT ; PUT IN BUFFER
MOV A, $ENDBRK ; OUTPUT CARRIAGE RETURN
CALL LAPCOM
LAPEXT:
SETB EA ; ENABLE INTERRUPTS
MOV DPTR, #TRECLED ; RECEIVE LED ON?
MOVX A, @DPTR
SETB P1.7 ; TURN OFF
JZ LAPE0 ; AND LEAVE OFF
CLR P1.7 ; NO TURN ON
LAPETO:
RET ; EXIT THIS MODULE

$EJECT

*************************************************************************
*************************************************************************
** I N I T I A L I Z A T I O N **
*************************************************************************
*************************************************************************

;
; The following is called once by the INIT module.
; The following is for the initialization of the serial port used
; for transmitting to the Computer. It is initialized, and enabled.
;****************************************************************************
; Baud Rate - 1200
; Start Bits - 1
; Data Bits - 8
; Stop Bits - 2
; Parity - None
;****************************************************************************

LAPINI:

    MOV    DPTR,#SLFLGL ; SET OUTFLG
    MOVX   A,@DPTR
    ORL    A,#OUTFLG
    MOVX   @DPTR,A ; WILL NOT TRANSMIT TO OTHER AIRCRAFT

    MOV    DPTR,#LAPSTS ;
    MOV    A,#TRSRES ; RESET USRAT
    MOVX   @DPTR,A ;

    MOV    R7,#3FH ; WAIT A BIT
    DJNZ   R7,$

    MOV    A,#LAPMIF ; SET MODE INSTRUCTION FORMAT
    MOVX   @DPTR,A ;

    MOV    A,#RECVON ; GET COMMAND INSTRUCTION FORMAT
    MOVX   @DPTR,A ; SET

    MOV    DPTR,#RDDCMN ; SET IN MEMORY
    MOVX   @DPTR,A

    MOV    DPTR,#LAPDAT ; DO A DUMMY READ
    MOVX   A,@DPTR ;

; SET ROTATING BUFFER POINTERS (OUTPUT)

    MOV    DPTR,#XTODBF ; GET START OF BUFFER
    MOV    R4,DPL ; SAVE LSB
    MOV    R5,DPH ; SAVE MSB

    MOV    DPTR,#XTODPO ; SET COM. OUT POINTER
    MOV    A,R5 ;
    MOVX   @DPTR,A ; SAVE MSB
    INC    DPTR ;
    MOV    A,R4 ; SAVE LSB
    MOVX   @DPTR,A ;

    MOV    DPTR,#XTODPI ; SET COM. IN POINTER
    MOV    A,R5 ;
    MOVX   @DPTR,A ; SAVE MSB
    INC    DPTR ;
    MOV    A,R4 ; SAVE LSB
    MOVX   @DPTR,A ;

; The following sets the input pointer

LPRINI:

    MOV    DPTR,#LTTDBV ; RESET INPUT POINTER
    MOV    R4,DPL ;
    MOV    A,DPL ; TO START OF BUFFER
    MOV    R5,A ;
    MOV    DPTR,#RFMDPT ;
    MOVX   @DPTR,A ;
    INC    DPTR ;
    MOV    A,R4 ;
    MOVX   @DPTR,A ;
; The following subroutine converts the data in the buffer STSBUF of
; length STSLEN and puts the hex characters in the Transmit buffer.

LORCON:
    MOV  R1, $4
    MOV  R2, $0

LORCN1:
    MOVX A, @DPTR
    INC  DPTR
    CJNE A, $2DH, LORCN2
    CLR  C
    JMP  LORC2A

LORCN2:
    SETB C

LORC2A:
    MOV  A, R2
    RLC  A
    MOV  R2, A
    DJNZ R7, LORCN3
    DEC  R1
    JMP  LORCN4

LORCN3:
    DJNZ R1, LORCN1

CALL BINOUT
JMP LORCON

LORCN4:
    CLR  C
    RLC  A
    DJNZ R1, LORCN4

CALL BINOUT

RET

; THE FOLLOWING SUBROUTINE ADDS UP THE DATA STARTING AT DPTR FOR
; THE CHECKSUM CALCULATION.

CHKADD:
    MOV  R7, $0
    ; CLEAR R7

CHKLOP:
    MOVX A, @DPTR
    ; GET DATA
    ADD A, R7
    ; ADD DATA TO CHECKSUM
    MOV  R7, A
    ; SAVE
    INC  DPTR
    ; INC POINTERS
    MOV  A, DPL
    CJNE A, $1CH, CHK1
    ; NOT AT END CONTINUE
    MOV  A, DPH
    CJNE A, $1EH, CHK1
    ; NOW CHECK MSB

    RET
161

MOV      D PTR, #XTDBF
; AT END RESET

DJNZ    R5, CHKLOP

MOV      A, R7

RET
; EXIT SUBROUTINE

THE FOLLOWING SUBROUTINE CONVERTS THE DATA IN THE ACC TO ASCII AND
; OUTPUTS IT

HEXOUT:

PUSH    ACC

SWAP    A

CALL    BINOUT
; GET MSB

CALL    ACC
; OUTPUT IT

POP     BINOUT
; GET LSB

; AND OUTPUT IT

RET

This subroutine takes the ACC and converts to ASCII and outputs it
to the console

BINOUT:

ANL      A, $0FH
; STRIP OFF MSB

JAG      (9, BINOT1)
; GREATER THAT 9

ORL      A, $30H
; MAKE ASCII

JMP      BINOT2
; CONTINUE

BINOT1:

ADD      A, $37H
; MAKE ASCII

CALL     LAPCOM
; OUTPUT TO LAPTOP

RET
; EXIT SUBROUTINE

This subroutine when called saves all microprocessor pointers
; acc etc. and takes the value that is in the acc. and outputs it
; serially.

LAPCOM:

PUSH    PSW
; SAVE PSW

PUSH    DPH
; SAVE D PTR

PUSH    DPL

PUSH    ACC
; SAVE ACC

PUSH    ICH
; R 4

PUSH    IDH
; R 5

PUSH    I FH
; R 7

PUSH    IE H
; R 6

MOV      R5, A
; SAVE DATA

; PUT IN BUFFER AT POINT POINTED TO BY XTDPI

MOV      D PTR, #XTDEND
; GET END OF BUFFER

MOV      R4, DPL
; AND SAVE

MOV      R6, DPH

MOV      D PTR, #XTDPI
; PUT IN BUFFER AT XTDPI

MOVX     A, @D PTR
; GET MSB

MOV      R7, A
; SAVE

INC      DP TR

MOVX     A, @D PTR
; GET LSB

MOV      DPL, A
; AND SAVE

MOV      DPH, R7
; SAVE MSB
IN:
MOV A,R5 ;GET DATA
MOV @DPTR,A ;SAVE DATA IN BUFFER

RESET POINTER
INC DPTR ;INC POINTER
MOV A,DPL ;AT END OF BUFFER
CJNE A,1CH,COM1 ; NOT AT END CONTINUE
MOV A,DPH ;NOW CHECK MSB
CJNE A,1EH,COM1
MOV DPTR,@XTODBF ;AT END RESET
COM1:
MOV R5,DPL ;GET LSB
MOV A,DPH ;GET MSB
MOV DPTR,#XTODPI ;IN COM IN POINTER
MOVX @DPTR,A ;SAVE MSB
INC DPTR ;
MOV A,R5 ;SAVE LSB
MOVX @DPTR,A ;
MOV DPTR,#TRNINP ;TRANSMIT IN PROCESS?
MOVX A,@DPTR ;
JNZ COM2 ;YES CONTINUE
MOV A,#OFFH ;NO SET FLAG
MOVX @DPTR,A ;
MOV DPTR,#RDDCMN ;ENABLE TRANSMIT
MOVX A,@DPTR ;MEMORY
MOVX @DPTR,A
MOV DPTR,#1APSTS ;ENABLE TRANSMIT
MOVX @DPTR,A

COM2:
POP 1EH ;R6
POP 1FH ;R7
POP 1DH ;R5
POP 1CH ;R4
POP ACC
POP DPL
POP DPH
POP PSW

RET

;The following subroutine sends out the # message or reset message
; after the system has been initialized and is up and running in the
; main loop.

RSTOUT:
MOV DPTR,#XTODPI ;SAVE POINTER FOR CHECKSUM
MOVX A,@DPTR
MOV R0,A
INC DPTR
MOVX A,@DPTR
MOV R1,A
MOV A,#STTBRK ;OUTPUT A START BRACKET
CALL LAPCOM
MOV A,'#' ;GET LB SYMBOL
CALL LAPCOM ;OUTPUT
MOV DPTR,#AIRCID ;GET AIRCRAFT ID LOCATION
MOV R7,#AIRIDN ;GET NUMBER OF DIGITS IN AIRCRAFT ID
CALL R7DOUT ;OUTPUT AIRCRAFT ID.
MOV    DPTR,#SLFFLG    ;GET SELFTEST FLAG
MOVX   A,#DPTR
CALL   HEXOUT        ; OUTPUT

MOV    R7,#RSTSPC    ;GET NUMBER OF SPACES FOR
                   ; THIS MESSAGE
MOV    A,' '         ;GET SPACE

RSTSPS:
CALL   LAPCOM        ; OUTPUT SPACES
DJNZ   R7,RSTSPS     ; UNTIL DONE
MOV    R5,#MSGTOT-3  ;GET TOTAL LENGTH OF MESSAGE

MOV    DPTR,#XTDEND  ;GET END OF BUFFER
MOV    R4,DPL       ; AND SAVE
MOV    R6,DPH

MOV    DPH,R0       ;GET START OF MESSAGE
MOV    DPL,R1
CALL   CHKADD       ;ADD CHECKSUM TO ACC
CALL   HEXOUT       ;PUT IN BUFFER
MOV    A,#ENDBRK    ;OUTPUT A END BRACKET
CALL   LAPCOM

RET

; The following subroutine outputs data at dptr for the number
; of times found in R7.

R7DOUT:

MOVX   A,#DPTR       ;GET ID NUMBER
CALL   LAPCOM        ; OUTPUT
INC    DPTR

DJNZ   R7,R7DOUT     ; UNTIL DONE
RET

;EXIT SUBROUTINE

$EJECT

;**********************************************************************
;**********************************************************************
; **                                                          **
; **    INTERRUPT HANDLER                                        **
; **                                                          **
;**********************************************************************
;**********************************************************************

; THIS INTERRUPT HANDLER HANDLES THE OUTPUTS TO THE DATA CONTROL HEAD
; AS WELL AS A JUMP FOR THE FIRST OUTPUT.
; A ROTATING BUFFER IS USED WITH THE INPUT TO THE BUFFER POINTED TO BY
; XTODPO AND THE OUTPUT POINTED TO BY XTDPO. WHEN THE LSB OF THE OUTPUT
; POINTER IS POINTING TO THE SAME POINT AS THE INPUT POINTER THE NOTHING
; IS TRANSMITTED AND THE INTERRUPT IS DISABLED.

LAPTI:

PUSH   1BH           ;SAVE R3
PUSH   1CH
PUSH   1DH
PUSH   1EH
PUSH   1FH

INC    INTERRUPT COUNT

MOV    DPTR,#LAPCT   ;INC COUNT
MOVX   A,#DPTR       ;FOR INTERRUPTS
INC    A
MOVX   #DPTR,A
; CHECK TO SEE IF INPUT EQUALS OUTPUT POINTER

    MOV DPTR,#XTDEND ; GET END
    MOV R7,DPL ; OF BUFFER
    MOV R6,DPH

    MOV DPTR,#XTODPI ; GET INPUT POINTER
    MOVX A,@DPTR ; MSB
    MOV R3,A
    INC DPTR ; LSB
    MOVX A,@DPTR
    MOV R4,A ; SAVE
    MOV DPTR,#XTODPO ; GET OUTPUT POINTER
    MOVX A,@DPTR ; MSB
    MOV R5,A ; SAVE

    INC DPTR ; GET LSB
    MOVX A,@DPTR

    CJNE A,1CH,INTE41 ; NOT THE SAME CONTINUE

    MOV A,R5 ; GET MSB
    CJNE A,1BH,INTE41

    MOV DPTR,#RDDCMN ; GET MEMORY
    MOVX A,@DPTR
    ANL A,#TRANOF ; DISABLE TRANSMIT
    MOVX @DPTR,A

    MOV DPTR,#FLAPSTS ; DISABLE TRANSMIT FOR USART
    MOVX @DPTR,A

    MOV DPTR,#TRNINP ; CLEAR TRANSMIT IN PROCESS FLAG
    CLR A
    MOVX @DPTR,A

    JMP IN4END ; GO TO END OF INTERRUPT

INTE41:

    MOV DPL,A ; SET POINTER TO OUTPUT
    MOV DPH,R5

    MOVX A,@DPTR ; GET DATA TO OUTPUT
    MOV R5,A ; AND SAVE

    INC DPTR ; INCREMENT AND SAVE POINTER

    MOV A,DPL ; SEE IF AT END OF BUFFER
    CJNE A,1FH,INTE42 ; NO CONTINUE
    MOV A,DPH ; CHECK MSB
    CJNE A,1EH,INTE42 ; SEE IF DONE

INTE42:

    MOV DPTR,#XTODEF ; YES SAVE START OF BUFFER

    MOV A,DPH ; GET MSB
    MOV R7,DPL ; GET LSB

    MOV DPTR,#XTODEPO ; GET OUT POINTER
    MOVX @DPTR,A ; SAVE MSB
    INC DPTR ;
    MOV A,R7 ;
    MOVX @DPTR,A ; SAVE LSB

    MOV DPTR,#LAPDAT ; OUTPUT DATA
    MOVX @DPTR,A ; GET DATA OUTPUT ADDRESS
    MOV A,R5 ;
    MOVX @DPTR,A ; OUTPUT TO LAP TOP
    CALL PRTC0M ; OUTPUT TO PRINTER

IN4END:

    POP 1FH ; POP R7
    POP 1EH ; POP R6
; This interrupt handler handles the data coming into
; the UART.

LAPRN1:
  PUSH 1EH
  PUSH 1DH
  PUSH 1CH
  PUSH 1BH
  MOV DPTR,$LAGRCT
  MOVX A,@DPTR
  INC A
  MOVX @DPTR,A
  MOV DPTR,$TLPRTO
  MOV A,$VRFDTO
  MOVX @DPTR,A
  MOV DPTR,$LAPDAT
  MOVX A,@DPTR
  MOV R5,A
  CALL PRTFCOM
  MOV DPTR,$RCVINP
  MOVX A,@DPTR
  JNZ LPRSAV
  MOV A,R5
  CJNE A,'T',LAPRN1
  JMP LPRNE

LAPRN1:
  CJNE A,'R',LAPRN2
  JMP LPRNE

LAPRN2:
  CJNE A,'L',LAPRN4
  JMP LPRNE

LAPRN3:
  JMP LPRRSRT

LAPRN4:
  CJNE A,'O',LAPRN3
  ADD A,$OFFH
  MOVX @DPTR,A

LPRSAV:
  MOV DPTR,$RFMDPT
  MOVX A,@DPTR
  MOV R4,A
  INC DPTR
  MOVX A,@DPTR
  MOV DPL,A
  MOV DPH,R4
  MOV A,R5
  MOVX @DPTR,A
  MOV A,DPL
  INC DPTR
  MOV A,DPL
  MOV R4,DPL
  MOV R6,DPH
  MOV DPTR,$LTDVE+1
  MOV R3,DPL
  CJNE A,1BH,LPRSV1
  JMP LPRHAN

LPRSV1:
  ; NO CONTINUE
  ; YES GO HANDLE RECEIVED MESSAGE
LPJMPE:
  JMP LPREND ;EXIT
LPRSV1:
  MOV A,R5 ;CARRIAGE RETURN
  CJNE A,CR,LPJMPE ;NO CONTINUE
LPRHAN:
  MOV DPTR,#LTTDVB ;SEE WHAT KIND OF A MESSAGE IT IS
  MOVX A,DPTR
  CJNE A,'#R',LPRHN1 ;RESET MESSAGE ;YES HANDLE RESET MESSAGE
  MOV DPTR,#VTRCNT ;CLEAR RADIO
  CLR A
  MOVX @DPTR,A
  MOV DPTR,#VLCNT ;CLEAR LORAN
  MOVX @DPTR,A
  MOV DPTR,#SLFFLG ;TURN OFF OTHERS
  MOVX A,DPTR
  ORL A,#OUTFLG
  MOVX @DPTR,A
  MOV DPTR,#NWDRST ;SET IGNORE WATCHDOG FLAG
  MOV A,#FFH
  MOVX @DPTR,A
JMP LPRRST ;CONTINUE
LPRHN1:
  CJNE A,'#O',LPRHN2 ;NO AN O MESSAGE CONTINUE
  MOV DPTR,#LTTDVB+1 ;GET LEAST SIG TIME DIGIT
  MOVX A,DPTR
  CJNE A,'#0',LPOCLR ;SET RECEIVE CLEAR
  INC DPTR
  MOVX A,DPTR
  CJNE A,'#0',LPOCLR ;GET MIDDLE DIGIT
  INC DPTR
  MOVX A,DPTR
  CJNE A,'#0',LPOCLR ;GET LEAST SIG. DIGIT
  INC DPTR
  MOVX A,DPTR
  CJNE A,'#0',LPOCLR ;SET NO INPUT FROM OTHER AIRCRAFT
  MOV DPTR,#SLFFLG
  MOVX A,DPTR
  ORL A,#OUTFLG
  MOVX @DPTR,A
JMP LPRRST ;CONTINUE
LPOCLR:
  MOV DPTR,#SLFFLG ;CLEAR NO INPUT FROM OTHER AIRCRAFT
  MOVX A,DPTR
  MOV R7,A
  MOV A,#OUTFLG
  CPL A
  ANL A,#1FH
  MOVX @DPTR,A
JMP LPRRST ;CONTINUE
LPRHN2:
  CJNE A,'#T',LPRHN3 ; NOT A T CONTINUE ;HANDLE TIME MESSAGE ;SEE IF TIME MESSAGE IS COMPLETE
  MOV DPTR,#LTTDVB+5 ;GET END
  MOV A,DPL
  CJNE A,1CH,LPRRST ; NOT RIGHT NUMBER OF CHAR.
  MOV DPTR,#LTTDVB+2 ;GET SEC. MOST SIG. TIME DIGIT
  MOVX A,DPTR
  ANL A,#0FH ;MAKE BCD
  MOV R6,A ;SAVE
; MULTIPLY BY 10
MOV R6,A ; SAVE
INC DPTR ; GET LEAST SIG DIGIT
MO VX A, @DPTR
ANL A, $0FH ; MAKE BCD
ADD A, R6 ; COMBINE MSB AND LSB
MOV DPTR, @VTRCNT ; SET IN TIMER
MOVX @DPTR, A
CLR A
MOV DPTR, @TTRCNT ; CLEAR RADIO COUNTER TO RESTART
MOVX @DPTR, A

; HANDLE TIME MESSAGE

; SEE IF TIME MESSAGE IS COMPLETE

MO VX DPTR, @LTTDVB+5 ; GET END
MOV A, DPL
CJNE A, @CH, LPRRST ; NOT RIGHT NUMBER OF CHAR.

; MOST SIG TIME DIGIT IS NOT USED AT PRESENT

MO VX DPTR, @LTTDVB+2 ; GET SEC. MOST SIG. TIME DIGIT
MOVX A, @DPTR
ANL A, $0FH ; MAKE BCD
MOV R6, A ; SAVE
RL A ; MULTIPLY BY 10
RL A
RL A
ADD A, R6
ADD A, R6
MOV R6, A ; SAVE
INC DPTR ; GET LEAST SIG DIGIT
MO VX A, @DPTR
ANL A, $0FH ; MAKE BCD
ADD A, R6 ; COMBINE MSB AND LSB
MOV DPTR, @VLRCNT ; SET IN TIMER
MOVX @DPTR, A
CLR A
MOV DPTR, @TLRCNT ; CLEAR LORAN COUNTER TO RESTART
MOVX @DPTR, A

; RESET MESSAGE BUFFER

LPRRST:

MO VX DPTR, @RCVINV ; CLEAR RECEIVE INPROCESS FLAG
CLR A
MO VX @DPTR, A
MO VX DPTR, @LTTDVB ; RESET POINTER
MOV R4, DPL
MOV R6, DPH

LPEND:

MO VX DPTR, @RPMDPT ; SAVE POINTER
MOV A, R6
MOVX @DPTR, A
;
5,153,836

175
POP  1BH  ;SAVE R3
POP  1CH  ;SAVE R4
POP  1DH  ;SAVE R5
POP  1EH  ;SAVE R6
RET  ;EXIT INTERRUPT HANDLER

END

$TITLE (PRINTER 8052 BASED)
NAME PRINTER

;ORIGIONAL RELEASE  01 FEB 90
;LAST CHANGE  06 FEB 90  15:13

;Basic Description of Module
; This module handles the message monitoring to the printer or whatever
; type of monitor is being used
;
;******************************************************************************
;******************************************************************************
;   **    **  **                              **
;   **    **  **                              **
;  **       **  **  P U B L I C S  **
;   **    **  **
;******************************************************************************
;
PUBLIC  PRTCOM                  ;Input to this module
PUBLIC  PRTIAL                  ;Initialization Routine
PUBLIC  PRTINP                  ;Interrupt Module

$EJECT

;******************************************************************************
;******************************************************************************
;   **    **  **
;   **    **  **  E X T E R N A L S  **
;   **    **  **
;******************************************************************************

EXTERN NUMBER (PRTSTTS,PRTDAT)   ;ADDRESS AND DATA FOR PRINTER USART
EXTERN NUMBER (PRTMTIF)          ; PRINTER MODE INSTRUCTION FORMAT
EXTERN NUMBER (PRTCMP)           ; COMPARE VALUE FOR SELFTEST
EXTERN NUMBER (TRSRB,TRSDIS)     ; PRINTER USART CONTROL
EXTERN NUMBER (TRTRAN)           ; RESET TRANSMIT
EXTERN XDATA (PRTTCT)            ; INTERRUPT COUNTER
EXTERN NUMBER (PRTVAL)           ;VALUE FOR ENABLE OF PRINTER
EXTERN XDATA (PRTFLG)            ;

;******************************************************************************
;******************************************************************************
;   **    **  **
;   **    **  **  D A T A  **
;   **    **  **
;******************************************************************************

DATA_AREA     segment XDATA
PROG_S        segment CODE
RSEG          DATA_AREA

XTODPO:       DS  2  ;OUTPUT POINTER FOR BUFFER
XTODPI:       DS  2  ;INPUT POINTER FOR BUFFER
XTODBF:       DS 500 ;DATA BUFFER FOR BUFFER
XTDEND:       DS  1  ;END OF BUFFER
PRTINP:       DS  1  ;PRINTER FLAG
RSEG PROG_S

This routine is called only by LAPHAN when called saves all microprocessor pointers acc etc. and takes the value that is in the acc. and outputs it serially.

PRTCOM:

PUSH PSW ;SAVE PSW
PUSH DPH ;SAVE DPTR
PUSH DPL ;
PUSH ACC ;SAVE ACC

MOV DPH,#PRTFGL ;PRINTER ENABLED
MOVX A,@DPTR
CJNE A,#PRTVAL,PRTCME ;NO EXIT
POP ACC ;RESTORE ACC
PUSH ACC

PUSH 1CH ;R4
PUSH 1DH ;R5
PUSH 1FH ;R7
PUSH 1EH ;R6

MOV R5,A ;SAVE DATA

; PUT IN BUFFER AT POINT POINTED TO BY XTDPI

MOV DPTR,#XTDEND ;GET END OF BUFFER
MOV R4,DPL ;AND SAVE
MOV R6,DPH

MOV DPTR,#XTDPI ;PUT IN BUFFER AT XTDPI
MOVX A,@DPTR ;GET MSB
MOV R7,A ;SAVE
INC DPTR ;
MOVX A,@DPTR ;GET LSB
MOV DPL,A ;AND SAVE
MOV DPH,R7 ;SAVE MSB

NOCONB:

MOV A,R5 ;GET DATA
MOVX @DPTR,A ;SAVE DATA IN BUFFER

; RESET POINTER

INC DPTR ;INC POINTER
MOV A,DPL ;AT END OF BUFFER
CJNE A,1CH,COM1 ;NOT AT END CONTINUE
MOV A,DPH ;NOW CHECK MSB
CJNE A,1EH,COM1

MOV DPTR,#XTDBF ;AT END RESET

COM1:

MOV R5,DPL ;GET LSB
MOV A,DPH ;GET MSB
MOV DPTR,#XTDPI ;IN COM IN POINTER
MOVX @DPTR,A ;SAVE MSB
INC DPTR ;
MOV A,R5 ;SAVE LSB
MOVX @DPTR,A ;

MOV DPTR,#PRTINP ;TRANSMIT IN PROCESS?
MOVX A, @DPTR
JNZ COM2 ; YES CONTINUE
MOV A, #OFFH ; NO SET FLAG
MOVX @DPTR, A

MOV A, #TRANON
MOV DPTR, #PRTSTS ; ENABLE TRANSMIT
MOVX @DPTR, A

COM2:
POP 1EH ; R6
POP 1FH ; R7
POP 1DH ; R5
POP 1CH ; R4

PRTCMEM:
POP ACC
POP DPL
POP DPH
POP PSW

RET

; END OF MAIN PROGRAM

$EXIT

; ****************************************
; ****************************************
; " " " INITIALIZE " "
; " " " "
; ****************************************
; ****************************************

; ENABLE PRINTER FOR TRANSMIT, BUT FOR NOT FOR INTERRUPT

PRTIAL:

MOV DPTR, #PRTSTS ; RESET USART
MOV A, #TRSSRES
MOVX @DPTR, A

MOV R7, #3FH ; WAIT A BIT
DJNZ R7, $ ;

MOV A, #PRTMIF ; SET MODE INSTRUCTION FORMAT
MOVX @DPTR, A

; SET ROTATING BUFFER POINTERS (OUTPUT)

MOV DPTR, #XTODBF ; GET START OF BUFFER
MOV R4, DPL ; SAVE LSB
MOV R5, DPH ; SAVE MSB

MOV DPTR, #XTODPO ; SET COM. OUT POINTER
MOV A, R5
INC DPTR
MOV A, R4
MOVX @DPTR, A

MOV DPTR, #XTODPI ; SET COM. IN POINTER
MOV A, R5
INC DPTR
MOV A, R4
MOVX @DPTR, A

RET ; EXIT INITIALIZATION
; THIS INTERRUP HANDLER HANDLES THE OUTPUTS TO THE DATA CONTROL HEAD
; AS WELL AS A JUMP FOR THE FIRST OUTPUT.
; A ROTATING BUFFER IS USED WITH THE INPUT TO THE BUFFER POINTED TO BY
; XTODPI AND THE OUTPUT POINTED TO BY XTODPO. WHEN THE LSB OF THE OUTPUT
; POINTER IS POINTING TO THE SAME POINT AS THE INPUT POINTER THE NOTHING
; IS TRANSMITTED AND THE INTERRUPT IS DISABLED.

; INC INTERRUPT COUNT

; CHECK TO SEE IF INPUT EQUALS OUTPUT POINTER

; NOT THE SAME CONTINUE

; CLEAR TRANSMIT IN PROCESS FLAG

;GO TO END OF INTERRUPT

; SET POINTER TO OUTPUT

; GET DATA TO OUTPUT
; AND SAVE

;INCREMENT AND SAVE POINTER
**Basic Description of Module**

This module is to receive data from the DEC Computer and save it in the buffer RFMDEF incrementing the counter RFMDCT which will indicate the number of messages in queue when the message is completely received.

This module will initialize the receive interrupt to receive a message. After it has completely received a message it will set the RFMRFG flag and the message will be found in the RFMRBF buffer. If a receive is in progress for a long period of time it will time out and reinitialize the receive input. Should the message not be completely received before timing out the message will be ignored and another message will be able to be received.

Interrupt Routine: RFMDIN
Initialization Routine: RFMDIT

---

**PUBLICS**

```asm
PUBLICS
```
PUBLIC RFMDEC ; Input to this module
PUBLIC RFMDIN ; Receive Interrupt Handler
PUBLIC RFMDIT ; Initialization called by INIT

******************************************************************************
** **
** ** EXTERNALS ** **
** **
******************************************************************************

EXTERN CODE (XTOTER) ; OUTPUT TO TERMINAL

EXTERN XDATA (RFMDBF) ; BEGINNING OF ROTATING BUFFER
EXTERN XDATA (RFMDPT) ; DEC INPUT BUFFER POINTER
EXTERN XDATA (RFMDBE) ; END OF ROTATING BUFFER
EXTERN XDATA (RFMDPT) ; DEC OUTPUT BUFFER POINTER
EXTERN XDATA (RFDOCT) ; MESSAGE COUNTER
EXTERN NUMBER (VFDCST) ; MESSAGE COUNTER MAX
EXTERN NUMBER (IC1W1,OCW1,OCW2) ; ENABLE 8259
EXTERN NUMBER (MASKVL) ; MASK MEMORY
EXTERN NUMBER (MASK) ; MASK VALUE
EXTERN NUMBER (MAKE) ; MASK VALUE FOR EXECLP
EXTERN NUMBER (CR) ; CARRIAGE RETURN
EXTERN XDATA (RDCCNT) ; INTERRUPT COUNTER
EXTERN NUMBER (SDSCHS,SDDCHS) ; USART STATUS AND DATA
EXTERN XDATA (RDCCHN) ; MEMORY FOR USART COMMANDS
EXTERN NUMBER (RECVO,RECVOR) ; COMMAND INSTRUCTIONS
EXTERN NUMBER (TRANOV,TRANOF) ; FOR RECEIVE AND TRANSMIT
EXTERN NUMBER (RXRDY) ; RECEIVE READY
EXTERN NUMBER (TXRDY) ; TRANSMIT READY
EXTERN XDATA (TRFDTO) ; RECEIVE TIMEOUT TIMER
EXTERN XDATA (DUDAPT) ; UART REFRESH TIMER
EXTERN XDATA (DTRNP) ; TRANS. TO DEC IN PROCESS
EXTERN XDATA (ASCNCON) ; ASCII CONVERSION
EXTERN NUMBER (ASCFLG) ; CONVERT TO ASCII

$EJECT

******************************************************************************
** **
** ** DATA ** **
** **
******************************************************************************

; THIS IS DATA USED INTERNAL TO THIS FILE ONLY

DATA_AREA             segment XDATA
RSEG                   DATA_AREA

CHARCT:  DS  1 ; CHARACTER COUNTER FOR BAD MESSAGES
SCRPDPT: DS  2 ; SCRATCH PAD POINTER FOR LAST GOOD MESSAGE
;******************************************************************************
; ENTITIES
;******************************************************************************

;******************************************************************************
; EQUATES
;******************************************************************************

VRFDTO   EQU  12         ;REINITIALIZATION AFTER 3 SECONDS
VDUART   EQU  8         ;USART REFRESH TIMER
VCHRCT   EQU  07H        ;CHARACTER COUNTER (NEVER MORE THAN 7)

;******************************************************************************
; PROGRAM
;******************************************************************************

PROGS    segment CODE
RSEG     PROGS

RFMDEC: :THE FOLLOWING IS TO REFRESH BAUD RATE IF NEEDED

MOV     DPTR,#DTRINP     ;TRANSMIT IN PROCESS
MOVX    A,#DPTR
JZ      REFREC          ;NO GO REFRESH RECEIVE
MOV     DPTR,#SDCSTS    ;GET STATUS
MOVX    A,#DPTR
ANL     A,#TXRDY
JNZ     REFREC          ;NO CONTINUE
MOV     DPTR,#RDDCMN    ;GET PAST STATUS
MOVX    A,#DPTR
ORL     A,#TRANON
MOVX    @DPTR,A
MOV     DPTR,#SDCSTS    ;REFRESH RECEIVE
MOVX    @DPTR,A
JMP     REFEND          ;CONTINUE

REFREC: :SEE IF NEED TO REFRESH USART

MOV     DPTR,#TDUART    ;TIMER EXPIRED?
MOVX    A,#DPTR
JNZ     REFEND          ;NO DO NOT REFRESH
MOV     A,#VDUART       ;YES REFRESH
MOVX    @DPTR,A
MOV     DPTR,#RDDCMN    ;GET PAST STATUS
MOVX    A,#DPTR
ORL     A,#RECVDN
MOVX    @DPTR,A
MOV     DPTR,#SDCSTS    ;REFRESH RECEIVE
MOVX    @DPTR,A

REFEND: MOV     DPTR,#TRFDTO   ;HAS MESSAGE TIMED OUT
MOVX    A,#DPTR
JNZ     KYEXIT          ;NO CONTINUE
MOV     DPTR,#SCPDPTR+1 ;MESSAGE COMMING IN
MOVX    A,#DPTR
MOV     R4,A            ;SAVE LSB OF BUFFER
MOV     DPTR,#RFMDPTR+1 ;GET LSB OF POINTER
MOVX    A,#DPTR
CJNE    A,1CH,RFMDE1    ;YES CONTINUE
JMP     KYEXIT          ;NO EXIT

RFMDE1:
KYEXIT:
RET
;END OF MAIN PROGRAM

; The following is called once by the INIT module.

RFMDIT:
; The following sets the input pointer
MOV DPTR,#RFMDFB
MOV R4,DPL
MOV A,DPH
MOV R5,A
MOV DPTR,#RFMDPT
MOVC @DPTR,A
INC DPTR
MOV A,R4
MOVC @DPTR,A
MOV DPTR,#RFMDPT
MOV A,R5
MOVC @DPTR,A
INC DPTR
MOV A,R4
MOVC @DPTR,A
MOV DPTR,#SFCMDPT
MOV A,R5
MOVC @DPTR,A
INC DPTR
MOV A,R4
MOVC @DPTR,A
RET
;EXIT INITIALIZATION

; This interrupt handler handles the data comming into
; the USART.

RFMDIN:
PUSH 1EH
PUSH 1DH
PUSH 1CH
PUSH 1EH
INC INTERRUPT COUNT
MOV DPTR,#RDCCNT
MOVC A,@DPTR
INC A
MOVC @DPTR,A
MOV DPTR, #TRFDTO ;SET RECEIVE TIME OUT
MOV A, #VRFDTO ;TIMER
MOVX @DPTR, A
MOV DPTR, #SDCDAT ;READ DATA
MOVX A, @DPTR ; AND SAVE
CLR ASCFLG ;CLEAR ASCFLG
MOV DPTR, #ASCON 
MOVX A, @DPTR ; CONVERT?
CJNE A, '#A', NOCONA ; NO CONTINUE
MOV A, R5 ;RETRIEVE DATA
CALL ASCBIN ;CONVERT TO BINARY
JMP NOCONB ; AND CONTINUE

NOCONA:
MOV A, R5 ;GET DATA
CJNE A, '#CR', NOCONC ;CARRIAGE RETURN EXIT
SETB ASCFLG ;SET FOR ASCII
MOV A, '#X' ;OUTPUT X FOR TRANSMIT
CALL XTOTER ; OUTPUT TO TERMINAL
MOV A, '#' ;OUTPUT SPACE
CALL XTOTER ; OUTPUT TO TERMINAL
CLR ASCFLG ;CLEAR ASCFLG
JMP NOCONB ;

NOCONC:
CALL XTOTER ; OUTPUT TO TERMINAL
MOV DPTR, #RFMDCT ;CHECK MESSAGE COUNTER
MOVX A, @DPTR ; FOR OVERFLOW
CJNE A, #RFVDCT, RFDIN3 ; NOT OVERFLOW CONTINUE
JMP KEYEXT ; OVERFLOW EXIT

RFDIN3:
MOV DPTR, #RFMDPT ;GET MESSAGE POINTER
MOVX A, @DPTR ; MSB
MOV R4, A ;
INC DPTR ; LSB
MOVX A, @DPTR ;
MOV DPL, A ; AND SET IN D PTR
MOV DPH, R4 ;
MOV A, R5 ;
MOVX @DPTR, A ;SAVE DATA IN BUFFER
INC DPTR ;INCREMENT POINTER
MOV A, DPL ; SAVE POINTER
MOV R4, DPL ;
MOV R6, DPH ;
MOV DPTR, #RFMDBE ;AT END OF BUFFER
MOV R3, DPL ;
CJNE A, #1BH, RFDIN4 ;

MOV DPTR, #RFMDFBF ; YES GET BEGINNING OF BUFFER
MOV R4, DPL ;
MOV R6, DPH ;

RFDIN4:
MOV A, R5 ;CARRIAGE RETURN
CJNE A, '#CR', RFDIN6 ; NO CONTINUE
MOV DPTR, #CHARCT ; GET CHARACT OR COUNT
CLR A ; AND CLEAR
MOVX @DPTR, A ;

MOV DPTR, #RFMDCT ;CHECK MESSAGE COUNTER
MOVX A, @DPTR ; FOR OVERFLOW
CJNE A, $VRFDCT, RFDNSA
JMP RFDIN7

RFDNSA:
INX A
MOVX @DPTR, A

MOV DPTR, @SCPDPT
MOV A, R6
MOVX @DPTR, A
INC DPTR
MOV A, R4
MOVX @DPTR, A

JMP RFMEND

RFMEND:
MOV DPTR, @CHARCT
MOVX A, @DPTR
INC A
CJNE A, $VCHRCT, RFMEND
CLR A
MOVX @DPTR, A

RFDIN7:
MOV DPTR, #SCPDPT
MOVX A, @DPTR
MOV R6, A
INC DPTR
MOVX A, @DPTR
MOV R4, A

RFMEND:
MOV DPTR, #RFMDPT
MOV A, R6
MOVX @DPTR, A
MOV A, R4
INC DPTR
MOVX @DPTR, A

KEYEXT:
MOV DPTR, $ICW1
MOV A, $1FH
MOVX @DPTR, A

MOV DPTR, $OCW1
MOV A, $0H
MOVX @DPTR, A

MOV DPTR, $OCW1
MOV A, $80H
MOVX @DPTR, A

MOV A, MASKVL
ORL A, MASK
ORL A, MASKE
MOV DPTR, $OCW1
MOVX @DPTR, A

POP 1BH
POP 1CH
POP 1DH
POP 1EH
POP ACC
POP DPL
POP DPH
POP PSW

SETB EA

RETI

; SUBROUTINE
; THIS SUBROUTINE CONVERTS FROM ASCII TO BINARY
ASCTAB:

DB	00H
DB	01H
DB	02H
DB	03H
DB	04H
DB	05H
DB	06H
DB	07H
DB	08H
DB	09H
DB	0FH
DB	00H

ASCBIN:

SETB ASCFLG
SET FOR ASCII

CJNE A, $'X', ASCBN0
CARRIAGE RETURN EXIT

MOV A, $'X'
OUTPUT X FOR TRANSMIT

CALL XTOTER
OUTPUT TO TERMINAL

MOV A, $'
OUTPUT SPACE

CALL XTOTER
OUTPUT TO TERMINAL

JMP ASCEXT

ASCBN0:

CALL XTOTER
OUTPUT TO CONSOLE

MOV DPTR, #ASCTAB

CLR C
GET BINARY CHARACTER

SUBB A, $'0'

MOV A, @A+DPTR

RR A
GET AS MSB

RR A

RR A

PUSH ACC

ASCBN1:

MOV DPTR, #SDCSTS
RECEIVE BUFFER FULL

MOVX A, @DPTR

ANL A, $RXRDY

JZ ASCBN1

MOV DPTR, #SDCDAT
GET DATA

MOVX A, @DPTR

CALL XTOTER
OUTPUT TO CONSOLE

MOV DPTR, #ASCTAB

CLR C
GET BINARY CHARACTER

SUBB A, $'0'

MOV A, @A+DPTR

POP 1DH

ORL A, R5

MOV R5, A

ASCEXT:

CLR ASCFLG
CLEAR ASCII FLAG
United States Patent Application

of

Edward J. Fraughton

and

Philip H. Berger

for

A UNIVERSAL DYNAMIC NAVIGATION, SURVEILLANCE, EMERGENCY LOCATION, AND COLLISION AVOIDANCE SYSTEM AND METHOD

APPENDIX B
PROGRAMMING CODE

Copyright 1990 TERRASTARR, INC.

```c
/*
 * Collision Avoidance System Software
 * Copyright 1990 by TERRASTARR Corporation
 */

/ *<900116.1646>
* Basic display system
/ *<900205.1250>
* Interrupt driven serial input
/ *<900208.2326>
* Conditional compilation for input from comm port/disk
/ *<900215.1006>
* Error checking and realignment
/ *<900220.0228>
* Fixed heading error on plot
/ *<900221.0038>
* Added variable scale factor
/ *<900301.1233>
* Changed scale factor, increased range
/ *<900307.1337>
* Changed float variables to double
/ *<900312.1005>
* Added check for repeat loran position
/ *<900319.2357>
* Added bitmapped airplanes
/ *<900329.0810>
* Added altitude readout
/ *<900405.1201>
* Added "operator" controlled character plotting
/ *<900521.1040>
* Fixed floating point termination error
/ *<900610.1334>
* Fixed altitude position, added averaging (lookback var)
/ *<900611.0937>
* Hdg arrow, hdg rounding
/ *<900617.1228>
* Added data logging
/ *<900617.1229>
* Last revision date
*/

#include <stdio.h>
#include <time.h>
#include <conio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "colors.h"
#include "stools.h"
#include "pgdraws.h"
#include "ghead.h"
#include "xc.h"
#include "fkeys.h"
extern long int xc_test();
```
/* DEFINES */
#define true 1
#define false 0
#define NACPT 10 /* number of aircraft */
#define NDATA 10 /* number of data per aircraft */
#define PORT COM1 /* I/O port to data-V-com */
#define RATE BAUD1200 /* I/O data rate to data-V-com */
#define COMP 1 /* 1=data from file, 2=commport */
#define NOGRAPH 0 /* 1=graph off, 1 rec count */
#define LOOKBACK 5 /* number of points to "average" */

/* FUNCTIONS */
void initialize(); /* Initialize system */
int ploten(); /* data plotting function */
void data_in(); /* read data from file / port */
void process_data(); /* parse data */
int search(); /* Search table for aircraft ID */
int find_empty(); /* Find slot for new aircraft */
void clear_entry(); /* release ID entry */
float dist(); /* calc dist & abs bearing */
float relative(); /* function to calc rel bearing */
void distance_circles(); /* plot distance circles */
void center_airplane(); /* plot airplane in center */
int clip(); /* Keep graphics within bounds */
void plot_airplane(); /* bit mapped airplane plot */
void plot_previous_large(); /* plot prev position as a dot */
void plot_previous_small(); /* plot prev position as a dot */
void updata(); /* replt all acct when center moves */
int check(); /* verify number is within 0..9 */
void check_keyboard(); /* keyboard input & dispatch */
void toggle(); /* toggle a variable true/false */
void zoom(); /* zoom screen in/out */
int validate(); /* check for brackets * checksum */
void checksum(); /* calculate checksum of a string */
void align(); /* read new data until data aligns */
void open_port(); /* open up communications port */
int read_buffer(); /* interrupt serial port read */
void terminate(); /* end the program gracefully */
void open_file();
void open_save_file();
void read_rec();
void plot_read_string();

/* DIMENSIONED GLOBAL VARIABLES */
double latitude [NACPT][NDATA]; /* storage for latitude */
double longitude [NACPT][NDATA]; /* storage for longitude */
float heading [NACPT][NDATA]; /* storage for heading */
float speed [NACPT][NDATA]; /* storage for speed */
float v_speed [NACPT][NDATA]; /* storage for v_speed */
float distance [NACPT][NDATA]; /* storage for distance */
float rel_bearing [NACPT][NDATA]; /* storage for relative bearing */
long sample_time [NACPT][NDATA]; /* time data was received */
int altitude [NACPT][NDATA]; /* storage for altitude */
int status [NACPT][NDATA]; /* loran / xmitter status */
int data_pointer[NACPT]; /* data pointer for each aircraft */
int plotted [NACPT][NDATA]; /* indicates data plotted */
char hnumber [NACPT][7]; /* aircraft identifier */
char read_string [40]; /* character input variable */

/* SINGLE GLOBAL VARIABLES */
double mylat, mylon, hislat, hislon; /* current variables */
float myheading, myspeed; /* time variables */
int t_start, mytime, histime;
int myalt, hisalt;
int updata; /* reset counter for data save */

/* GLOBAL CONSTANTS */
double pi = 3.141592654;
double pi/180. /* make circles round */
double circle_ratio = 1.0; /* set scale to 4 mi / circle */
float scale = .25; /* make circles round */
```c
int radius = 50; /* radius increment of rings */
int myplane = LIGHTBLUE; /* aircraft color */
int hisplane = YELLOW; /* aircraft color */
int bogey = LIGHTMAGENTA; /* aircraft color */
int ctr = 0; /* debugging counter */
int records_read = 0; /* record counter */

/* GLOBAL FLAGS */
int vector_flag = false; /* turn on/off velocity vectors */
int autorun_flag = false; /* turn on/off auto disk read */
int altitude_flag = false; /* turn on/off altitude display */
int nnumber_flag = false; /* turn on/off nnumber display */
int previous_flag = false; /* turn on/off previous position*/
int hold_rewrite = false; /* flag to hold off clearing image */
int print_string_flag = false; /* print-plot input string */
int data_save_flag = false; /* save data to file */

/* FILE CONTROLS */
FILE *save_file;

/* CONDITIONAL VARIABLES */
#if COMP == 1
FILE *fp;
#endif

main()
{
 initialize();
 open_save_file();
 adapt = getAdapter();
 save_mode = getMode(&ncols);
 LINEWIDTH = 1;
#if NOGRAPH < 1
 mode = 0x18;
 setMode(mode);
 cls(BLACK);
 distance_circles();
#endif
 loop:
 #if COMP == 2
 if (data_in())
 process_data();
 #endif
 #if NOGRAPH < 1
 plotem();
 #endif
 check_keyboard();
 goto loop;
}

/* Routine to initialize arrays: puts null in nnumber */
/* string, sets data_pointer to -1, sets plotted flag */
/* positive for all data points, puts 0's in position */
/* array, sets up com port, inits Data-V-Com, gets my */
/* nnumber, puts it into the 0 position */

{ register int i, j, k;
 static int try = 0;
 int two = 2, three = 3, five = 5, six = 6;
 int err;
 char dv_status[2], buffer[81];

 buffer[35] = '\0'; /* make sure we don't run away */
 vector_flag = false; /* turn off velocity vector plot */
 altitude_flag = false; /* turn off altitude vector plot */
 time(&start); /* get reference time */

 for (i=0; i<NAMECT; i++) /* clear all arrays and set */
 {
 nnumber[i][0] = '\0'; /* pointers to -1 (empty condition*/
 data_pointer[i] = -1;
 }
```
for (j=0;j<NDATA;j++)
{
    latitude [i][j] = 9999.;
    longitude [i][j] = 9999.;
    altitude [i][j] = 0;
    sample_time [i][j] = 0;
    heading [i][j] = 0.;
    speed [i][j] = 0.;
    v_speed [i][j] = 0.;
    distance [i][j] = 0.;
    rel_bearing [i][j] = 0.;
    rel_heading [i][j] = 0.;
    status [i][j] = 0;
    plotted [i][j] = true;
}

#if COMP == 1
open_file();
read_rec();
i = strcspn(read_string,"#");
if (i != 1)
terminate;
else
    strncpy(nnumber[0],&read_string[2],6);
nnumber[0][7] = '\0';
#endif
#if COMP == 2
open_port();
try = 0;
if (++try < 5)
{
    xc_put(PORT,"R\r\n",&three);
    do
    {
        i = read_buffer(buffer,35);
    } while (i == 0);
    if (!(err = validate(buffer)))
    {
        i = strcspn(buffer,"#");
        if (i == 1)
            goto ok;
    }
    else
        terminate();
ok:
    memmove(nnumber[0],&buffer[2],6);
    nnumber[0][6] = '\0';
    memmove(dv_status,&buffer[8],2);
    xc_put(PORT,"L003\r\n",&six);
    xc_put(PORT,"T004\r\n",&six);
    xc_put(PORT,"O001\r\n",&six);
#endif

/**************************************************************/

void plotted()
{
    register int i, j;

    for (i=0;i<NACFT;i++)
    {
        j = data_pointer[i];
        if (j != -1)
        {
            if (!plotted[i][j])
            {
                if (i==0)
                {

*/ anybody home ? */

*/ has it already been plotted */
}
center_airplane(j);
    plotted[i][j] = true;
    update();
    } else if (strcmp(nnumber[i],"") && i!=0)
    {
        color = hisplane;
        OPERATOR = XOR;
        if (!hold_rewrite)
            airplane (i,j-1);
        airplane (i,j);
        /*
         * plot_previous(rel_bearing[i][j-1],distance[i][j-1]); *
         */
    }
    }
    hold_rewrite = false;
}
/*--------------------------------------------------------------------------------*/

int data_in() /* Routine to accept input data from file or */
    /* I/O port */
{
    int j, err;
    #if COMP==1
        read_rec();
        if (feof(fp))
            terminate();
        records_read++;
        read_string[35]="\0";
        #if NOGRAPH == 1
            printf("\n",read_string);
        #else
            if (print_string_flag)
                plot_read_string();
        #endif
    if (data_save_flag)
    {
        printf(save_file,\n"\n",read_string);
        file_record_count++;
        if (file_record_count>20)
        {
            fclose(save_file);
            open_save_file();
        }
    }
    return 1;
    #endif

    #if COMP == 2
    j = read_buffer(read_string,35);
    if (j)
    {
        records_read++;
        err = validate(read_string);
        /*
         * printf("err = \n",err);*
         */
        while (err)
        {
            align(read_string);
            check_keyboard;
        }
        read_string[35]="\0";
        #if NOGRAPH == 1
            printf("\n",read_string);
        #else
            if (print_string_flag)
                plot_read_string();
        if (data_save_flag)
        {
            /*
             * printf("err = \n",err);*
             */
            while (err)
            {
                align(read_string);
                check_keyboard;
            }
            read_string[35]="\0";
            #if NOGRAPH == 1
                printf("\n",read_string);
            #else
                if (print_string_flag)
                    plot_read_string();
            if (data_save_flag)
            {
                /*
                 * printf("err = \n",err);*
                 */
                while (err)
                {
                    align(read_string);
                    check_keyboard;
                }
            }
    #endif
    else
        /*
         * printf("err = \n",err);*
         */
        while (err)
        {
            align(read_string);
            check_keyboard;
        }
    #endif
    return 1;
    #endif
```c
void process_data() {
 /* Routine to parse input data, and calculate */
 /* heading, speed, vertical speed, distance and */
 /* relative bearing */

 double temp_num, intpart, fraction;
 float direction, length;
 int entry, j, previous, err_status;
 long tmnow, deltatime;
 char temp_char[10], id[7];

 memmove (temp_char, &read_string[25], 2); /* get error status */
 temp_char[2] = '\0';
 err_status = atoi (temp_char);
 if (! (err_status & 2)) { /* if its not new data, ignore it */
 mylat = latitude[0][data_pointer[0]]; /* get */
 mylon = longitude[0][data_pointer[0]]; /* current */
 myalt = altitude[0][data_pointer[0]]; /* data */
 myheading = heading[0][data_pointer[0]]; /* for my */
 myspeed = speed[0][data_pointer[0]]; /* plane */
 memmove(id,&read_string[1],6); /* peel off aircraft id */
 id[6] = '\0';
 entry = search(id);
 if (entry < 0) {
 entry = find_empty();
 memmove(number[entry],id,6);
 }
 data_pointer[entry] = j = check(data_pointer[entry] + 1);
 status[entry][3] = err_status;
 memmove (temp_char,&read_string[8],6); /* get latitude */
 temp_char[6] = '\0'; /* */
 temp_num = atof(temp_char) * .0001; /* */
 fraction = modf(temp_num,&intpart); /* */
 latitude[entry][j] = hislat = intpart + fraction / .6; /* */
 memmove (temp_char,&read_string[15],7); /* get longitude */
 temp_char[7] = '\0'; /* */
 temp_num = atof(temp_char) * .0001; /* */
 fraction = modf(temp_num,&intpart); /* */
 longitude[entry][j] = hislon = intpart + fraction / .6; /* */
 memmove (temp_char,&read_string[22],3); /* get altitude */
 temp_char[3] = '\0'; /* */
 altiitude[entry][j] = hisalt = atoi(temp_char); /* */
 sample_time[entry][j] = histime = time(&tmnow) - t_start; /* time */
 distance[entry][j] = dist(mylat,mylon,hislat,hislon, &direction); /* distance */
 rel_bearing[entry][j] = relative(myheading,direction); /* */
 previous = check(j - LOOKBACK); /* old data ptr */
 length = dist(latitude[entry][previous],longitude
 [entry][previous],hislat,hislon,&direction); /* how far */
 heading[entry][j] = direction; /* heading */
 rel_heading[entry][j] = relative(myheading,direction); /* relative hdg */
 deltatime = histime - sample_time[entry][previous];
 if (deltatime)
```
```c
209
{
 speed[entry][j] = length / deltime; /* speed */
 v_speed[entry][j] = (hisalt - myalt) / deltime; /* vert speed */
}
else
{
 speed[entry][j] = 0.0; /* no time */
 v_speed[entry][j] = 0.; /* no speed */
}
ploated[entry][j] = false;
}

int search(char *ident) /* Search table of nnnumbers for an aircraft */
/* identifier which matches ident. Return the */
/* entry number of matching ident, or -1 if fail */
{
 register int i;
 for (i=0; i<NACFT; i++)
 {
 if (strcmp(nnumber[i], ident) == 0) return i;
 }
 return -1; /* id not found */
}

int find_empty() /* Routine to find empty slot for new aircraft */
/* depends on data_pointer being set to -1 for */
/* empty slots */
{
 register int i;
 for (i=1; i<NACFT; i++)
 {
 if (data_pointer[i] == -1)
 return i;
 else
 return -1; /* only way this can happen is if array is full */
 }
}

void clear_entry(i)
register int i;
{
 register int j;
 data_pointer[i] = -1;
 nnumber[i][0] = '0';
 for (j=0; j<NDATA; j++)
 plotted[i][j] = true;
}

float dist(double mlat, double mon, double hlat, double hlon,
 float *bearing) /* Routine to calculate the distance and bearing */
/* to a target, given latitudes and longitudes of*/
/* my aircraft and the target aircraft */
{
 double deltalat, deltalong, avelat;
 float length;

 deltalat = (hlat - mlat) * 60.;
 avelat = (hlat + mlat) / 2.;
 deltalong = (mon - hlon) * cos(avelat * c) * 60.;
 length = sqrt(deltalat * deltalat + deltalong * deltalong);
 if (deltalong)
 {
 *bearing = 90. - atan(deltalat / deltalong) / c;
 if (deltalong < 0.) *bearing = *bearing + 180.;
 }
```
else
{
  if (deltalat < 0.)
    *bearing = 180.;
  else
    *bearing = 360.;
}
return length;
}
/*-----------------------------------------------*/
float relative(hdg, abs_heading)
  /* this routine calculates relative bearing to */
  /* target, given my heading and an absolute */
  /* bearing to a target */
{
  float rel;
  rel = 360. - hdg + abs_heading;
  if (rel>360.) rel -= 360.;
  return rel;
} /*-----------------------------------------------*/

void distance_circles()
  /* draws distance circles on display */
{
  char disp_buffer[30];
  int i;
  LINENOTH = 1;
  for (i=1;i<5;i++) /* draw circles */
    drawOval(0,0,1*radius,DARKGRAY,circle_ratio);
  gotoxy(60,29);
  sprintf(disp_buffer,"%3.3g MILES / CIRCLE\"0",1.0/scale);
  writeString(disp_buffer,LIGHTGREEN,0);
  drawLine(0,239,15,230,LIGHTCYAN);
  drawable(15,230,15,220,LIGHTCYAN);
  drawable(15,220,-15,220,LIGHTCYAN);
  drawable(-15,220,-15,230,LIGHTCYAN);
  drawable(-15,230,0,239,LIGHTCYAN);
} /*-----------------------------------------------*/

void center_airplane(int j)
  /* Draws an airplane at (0,0), puts heading */
  /* at top of screen */
{
  float hdg;
  static char disp_heading[5], disp_altitude[5], disp_count[5];
  static int y = 0;
  int x;
  hdg = myheading;
  LINENOTH = 1;
  OPERATOR = REPLACE;
  plot_airplane(0,0,LIGHTBLUE,0);
  plot_horz_str(-11,218,disp_heading,BLACK);
  if (hdg < 0)
    hdg += 360.;
  sprintf(disp_heading,"%3.1i",(int)(hdg+.5));
  disp_heading[3] = '\0';
  *heading = disp_heading[3];
  drawLine(5,0,0,0,BLACK); /* erase altitude */
  if (vector_flag)
  {
    x = 0;
    y = myspeed * 60. * 50. * scale;
  }
clip(x,y);
drawLine(0,0,0,y,LIGHTBLUE);
}

if (altitude_flag)
{
    sprintf(disp_altitude,"%3.3i",(int)myalt);
    disp_altitude[3] = '\0';
    plot_horz_str(10,-25,disp_altitude,LIGHTBLUE);
}
#endif
plot_horz_str(290,-226,disp_count,BLACK);
sprintf(disp_count,"%4.4i",Records_read);
disp_count[4] = '\0';
plot_horz_str(290,-226,disp_count,MAGENTA);
#endif

void airplane(int j, int k)
/* Routine to plot an airplane symbol with */
/* appropriate heading */
{
    float length, temp, angle;
    int x, y, x3, y3, xalt, yalt, picture;
    char disp_alt[10];

    k = check(k);
    temp = rel_heading[j][k];
    LINELNGTH = 1;
    x = radius * scale * distance[j][k] * cos ((450. - rel_bearing[j][k]) * c);
    y = radius * scale * distance[j][k] * sin ((450. - rel_bearing[j][k]) * c);
    if (!clip(x,y))
    {
        temp = temp + 11.25;
        if (temp > 360.)
        {
            temp = 360.0;
        }
        picture = (int) (temp / 22.5);
        plot_airplane(x,y,color,picture);
        if (vector_flag)
        {
            length = speed[j][k] * 60. * 50. * scale;
            angle = (90.0 - rel_heading[j][k]) * c;
            x3 = x + length * cos (angle);
            y3 = y + length * sin (angle);
            clip(x3,y3);
            drawLine(x,y,x3,y3,color);
        }
        if (altitude_flag)
        {
            sprintf(disp_alt,"%3.3i",(int)altitude[j][k]);
            disp_alt[3] = '\0';
            xalt = x + 10;
            yalt = y - 25.0;
            plot_horz_str(xalt,yalt,disp_alt,color);
        }
    }
}
  } /* plotted[j][k] = true; */

int clip(x,y)
{
    int clipped = false;
    if (*x < -320)
    {
        *x = -320;
        clipped = true;
    }
    if (*x > 320)
{  
  *x = 320;
  clipped = true;
}
if (*y < -240)  
{  
  *y = -240;
  clipped = true;
}
if (*y > 240)  
{  
  *y = 240;
  clipped = true;
}
return clipped;

void plot_airplane(int x, int y, int color, int angle)  
{  
  unsigned int     mask;
  int              row, column;
  static unsigned int pattern[16][16] = {
  0x0000, 0x0000, 0x0000, 0x0180, 0x0180, 0x03c0, 0x03c0, 0x03c0,
  0x0180, 0x0180, 0x0180, 0x0180, 0x0180, 0x07e0, 0x07e0, 0x07e0, /* pattern 0 */
  0x0000, 0x0000, 0x0000, 0x0600, 0x078e, 0x3ee0, 0x1fc0, 0x0ff0, 0x07fc, 0x03ff, 0x071f,
  0x2600, 0x7e00, 0x3c00, 0x0f00, 0x0700, /* pattern 1 */
  0x0000, 0x0300, 0x3800, 0x1c00, 0x1e60, 0x0f0e, 0x0fc0, 0x07c0, 0x07e0, 0x4f0f,
  0x0fc8, 0x783c, 0x380c, 0x1c00, 0x0800, 0x0000, /* pattern 2 */
  0x0400, 0x0e00, 0x0e00, 0x0700, 0x0700, 0x07fb, 0x03f8, 0x03f0, 0x07c0, 0x0def0,
  0x0fde0, 0x70f0, 0x3070, 0x3878, 0x1038, 0x0010, /* pattern 3 */
  0x0000, 0x0000, 0x01c0, 0x01c0, 0x01c0, 0x01c0, 0x0c3e0, 0x0ff8, 0x0ff8, 0xc3e0,
  0x01c0, 0x01c0, 0x01c0, 0x01c0, 0x01c0, 0x01c0, 0x0000, 0x0000, 0x0000, /* pattern 4 */
  0x0000, 0x1018, 0x3e83, 0x3070, 0x07f0, 0x0fde0, 0x0fde0, 0x07c0, 0x03f0, 0x03f8,
  0x03b8, 0x07b0, 0x07b0, 0x0700, 0x0600, 0x0600, /* pattern 5 */
  0x0400, 0x0e00, 0x0c06, 0x3c1e, 0x7e7c, 0x27f8, 0x03f0, 0x03e0, 0x07e0, 0x07f0,
  0x0f30, 0x0e00, 0x0c10, 0x1800, 0x1800, 0x0000, 0x0000, /* pattern 6 */
  0x0700, 0x2f80, 0x32c0, 0x7e00, 0x2600, 0x077f, 0x03ff, 0x07fc, 0x0ff0, 0x1fc0,
  0x3e00, 0x78e0, 0x6600, 0x0000, 0x0000, 0x0000, /* pattern 7 */
  0x07e0, 0x07e0, 0x0180, 0x0180, 0x0180, 0x0180, 0x03c0, 0x03fc, 0x0ff8, 0xff8f,
  0x030c, 0x0180, 0x0180, 0x0000, 0x0000, 0x0000, /* pattern 8 */
  0x00e0, 0x00f0, 0x003c, 0x007e, 0x0064, 0x0f8e, 0x0fc0, 0x03e0, 0x00f0, 0x03f8,
  0x077c, 0x071e, 0x0606, 0x0000, 0x0000, 0x0000, /* pattern 9 */
  0x0000, 0x0010, 0x0038, 0x031c, 0x3c1e, 0x1f3f, 0x0f0f, 0x07e0, 0x03e0, 0x03f0,
  0x07f0, 0x0678, 0x0378, 0x001c, 0x000c, 0x0000, /* pattern 10 */
  0x0000, 0x0000, 0x01c0, 0x000c, 0x0000, /* pattern 11 */
  0x00e0, 0x00e0, 0x00e0, 0x00e0, 0x00e0, 0x00e0, 0x00e0, /* pattern 12 */
  0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* pattern 13 */
  0x0000, 0x0000, 0x0018, 0x0038, 0x0070, 0x00fc0, 0x00f0, 0x07e0, 0x07c0, 0x0f0c0,
  0x1f8e, 0x3e7a, 0x781c, 0x3870, 0x0020, /* pattern 14 */
  0x0000, 0x0000, 0x0000, 0x0606, 0x071e, 0x077c, 0x03f8, 0x0ff0, 0x03fe0, 0x0ff80,
  0x0f8e0, 0x0064, 0x007e, 0x003c, 0x00f0, 0x00e0 /* pattern 15 */
};

for (row = 0; row < 16; row++)
{  
  for (column = 0; column < 16; column++)
  {  
    mask = 0x8000 >> column;
    if (pattern[angle][row] & mask)
        plots(x-8+column,y+8-row,color);
  }
}

void plot_previous_large(float bearing, float dist)  
{  
  /* A routine to plot a large dot in the previous */
  /* position of an aircraft */
}
int x, y;
    x = radius * dist * cos ((450. - bearing) * c);
    y = radius * dist * sin ((450. - bearing) * c);
    filloval(x,y,2,color,circle_ratio);
}

void plot_previous_small(float bearing, float dist)
/* A routine to plot a small dot in the previous */
/* position of an aircraft */
{
    int x, y;
    x = radius * dist * cos ((450. - bearing) * c);
    y = radius * dist * sin ((450. - bearing) * c);
    filloval(x,y,1,color,circle_ratio);
}

void update()
/* This is a routine to update relative positions*/
/* after the position of the primary aircraft */
/* (myplane) changes */
{
    register int i, j, new;
    float direction;

    mylat = latitude[0][data_pointer[0]];
    mylon = longitude[0][data_pointer[0]];
    myalt = altitude[0][data_pointer[0]];
    myheading = heading[0][data_pointer[0]];
    myspeed = speed[0][data_pointer[0]];
    for (i=1;i<NACFT;i++)
    {
        j = data_pointer[i];
        if (j != -1)
        {
            new = check(j+1);
            data_pointer[i] = new;
            latitude[i][new] = latitude[i][j];
            longitude[i][new] = longitude[i][j];
            altitude[i][new] = altitude[i][j];
            sample_time[i][new] = sample_time[i][j];
            heading[i][new] = heading[i][j];
            speed[i][new] = speed[i][j];
            v_speed[i][new] = v_speed[i][j];
            plotted[i][new] = false;

            /* calculate new distance ,rel-bearing, rel_heading ------*/
            distance[i][new] = dist(mylat,mylon,latitude[i][new],
                                    longitude[i][new],&direction);
            rel Bearing[i][new] = relative(myheading,direction);
            rel_heading[i][new] = relative(myheading,heading[i][new]);
        }
    }
}

int check(register int i)
/* This routine checks the value of the data */
/* pointer, and sets it between 0 and NDATA -1 */
{
    if (i > NDATA-1)
        i = i - NDATA;
    if (i<0)
        i = i + NDATA;
    return i;
}
void check_keyboard()
{
    char key;
    if (kbbhit())
    {
        key = getch(); /* if value = 0, its a function key */
        key = getch(); /* get the key value */
        if (key == F1)
            vector_flag = toggle(vector_flag);
        if (key == F2)
            altitude_flag = toggle(altitude_flag);
        if (key == F3)
            nnumber_flag = toggle(nnumber_flag);
        if (key == F4)
            zoom(1); /* zoom in */
        if (key == F5)
            zoom(0); /* zoom out */
        if (key == F6)
            data_save_flag = toggle(data_save_flag); /* save input data */
        if (key == F7)
            print_string_flag = toggle(print_string_flag);

        if (key == F11)
            initialize();
#if COMP == 1
        if (key == F10)
            { /*
             data_in();
             process_data();
            */
            if (key == SF10)
                autoread_flag = toggle(autoread_flag);
        }
        key = tolower(key);
        if (key == 'q')
            terminate();
#endif
    } /*if COMP == 1*/
    if (autoread_flag)
    {
        data_in();
        process_data();
    }
#endif

/*----------------------------------------------------------------------*/

int toggle( int variable)
{
    if (variable > 0)
        variable = false;
    else
        variable = true;
    return variable;
} /*----------------------------------------------------------------------*/

void zoom(int i)
{
    switch (i)
    {
    case 0:
        { /*
         if (scale > .015625)
         scale = scale / 2.0;
         break;
         */
    case 1:
        { /*
         if (scale < 4)
         scale = scale * 2.0;
         */
    }
break;
}
}
color(BLACK);
distance_circles();
update();
hold_write = true;

int validate(buffer)
char buffer[81];
{
    register int err;
    int cksum, value;
    char ascii_cksum[10], temp[10], *stop;

    if (buffer[0] != 'l')
        return 1;  /* 1 = no left bracket */
    checksum(buffer, &cksum, ascii_cksum, 32);
    memmove(temp, &buffer[32], 2);
    temp[2] = '\0';
    value = (int)strtoul(temp, &stop, 16);
    /* printf("%i;%i\n", value, cksum); */
    if (cksum != value)
        return 2;  /* 2 = bad checksum */
    else
        return 0;  /* 0 = no error */
}

void checksum(buffer, cksum, ascii_cksum, nchars)
char buffer[81], ascii_cksum[10];
int nchars, *cksum;
{
    register int i;

    *cksum = 0;
    for (i=0; i<nchars; i++)
    {
        /* printf("%c,%d\n",buffer[i],buffer[i]); */
        *cksum = *cksum + buffer[i];
    }
    *cksum = *cksum & 0xFF;
    itoa(*cksum, ascii_cksum, 16);
    /* printf("checksum = %d; %s; # digits = %d\n",*cksum,ascii_cksum,nchars); */
}

void align(buffer)
char buffer[81];
{
    register int i, j, k;
    char temp[80];

    i = strcsn(buffer, "\n");  /* search for "\n" in string */
    if (i < 35)
        memmove(buffer, &buffer[i], 35);  /* found one */
    else
    {
        do
        {
            read_buffer(temp, 1);  /* go find a "\n" */
        } while (!memcmp(temp, "\n", 1));
    }
    for (j=0; j<i; ) /* fill the rest of the buffer */
    {
        read_buffer(temp, 1);
if (!memcmp(temp,"[",1))
{
    buffer[0] = '\n';
    read_buffer(temp,34);
    memmove(&buffer[1],temp,34);
    buffer[35]=\0';
    return;
}
}
k = 35+i+j;
memmove(&buffer[k],&temp[0],1);
/* so go ahead and read it*/
j++;
}
buffer[35]=\0';
*/
void open_port()
{
    if (xc_entr(2) == 0)
    {
        if (PORT == COM3)
            setport(0x2EB,1,4,PORT,0);
        xc_link(PORT,0);
        xc_init(PORT,RATE,NOPAR,DATAB,STOP1);
    }
    else
    {
        printf("Unable to open PORT");
        exit(0);
    }
}
int read_buffer(buffer,count)
int count;
char buffer[81];
{
    char key;
    if (xc_test(PORT) >= count)
    {
        xc_get(PORT,buffer,&count);
        buffer[35]=\0';
        return 1;
    }
    /* if (kbhit())
    {
        key = getch();
        key = tolower(key);
        if (key == 'q')
            terminate();
    }*/
    return 0;
}
void terminate()
{
    #if COMP==2
        xc_unlk(PORT);
        xc_exit();
    #endif
    setMode(save_mode);
    cls(0);
    exit(0);
}
#if COMP==1
void open_file()
/* Routine to open a data file */

if ((fp = fopen("data","r")) == NULL)
{
    printf("Cannot open data file\n") ;
    terminate() ;
}

void read_rec() /* read a file record (terminated with \n) */
{
    int i ;
    char ch ;

    i=0 ;
    ch = getc(fp) ;
    while (ch!='\n'&&ch!=EOF)
    {
        read_string[i] = ch ;
        i++ ;
        ch = getc(fp) ;
    }
    read_string[i] = '\0' ;
    /* printf ("%s\n",read_string) */
}

void plot_read_string()
{
    char out_string[40];
    static char old_string[40] = "

    OPERATOR = REPLACE;
    sprintf(out_string,"%s\n",read_string);
    out_string[35] = '\0';
    plot_horz_str(-300,-210,old_string,BLACK);
    plot_horz_str(-300,-210,out_string,LIGHTRED);
    memmove(old_string,out_string,36);
}

void open_save_file() /* Routine to open file to save data */
{
    if ((save_file = fopen("datasave","a")) == NULL)
    {
        printf("Cannot open save file\n") ;
        terminate() ;
    }
}

END OF PROGRAM
What is claimed and desired to be secured by United
States Letters Patent is:

1. A method for announcing the position of a first
aircraft at a first position, the first position being within
airspace containing a plurality of other aircraft, to a
receiver located at a second position not farther than a
predetermined range from the first position, the method
comprising the steps of:
(a) determining on board the first aircraft the position
of the first aircraft relative to a fixed reference;
(b) encoding an identification code, the presence or
absence of any current operating communication
radio frequency and the position of the first aircraft
so that the identification code, the presence or
absence of current operating communication radio
frequency and the position of the first aircraft can
be carried by a first radio frequency signal;
(c) avoiding conflicts with any radio frequency sig-
nals present in the airspace which conflict with the
first radio frequency signal;
(d) transmitting from the first aircraft the first radio
frequency signal carrying the identification code, the
presence or absence of any current operating
communication radio frequency and the position of the
first aircraft;
(e) receiving the first radio frequency signal transmit-
ted from the first aircraft at the second position;
(f) decoding the identification code, the current oper-
ating communication radio frequency if any, and
the position of the first aircraft from the first radio
frequency signal; and
(g) monitoring on a visual display the identification
code, the current operating communication radio
frequency if any, and the position of the first air-
craft within the airspace at the second position so
that the position of the first aircraft within the
airspace is known relative to the fixed reference,
and so that communication can potentially be un-
dertaken with the specifically identified aircraft.

2. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 wherein the step of
determining the position of the first craft comprises the
step of receiving a LORAN signal.

3. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 wherein the step of
determining the position of the first craft comprises the
step of receiving a GPS signal.

4. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 wherein the fixed
reference exists both within the airspace and outside the
airspace.

5. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 wherein the step of
determining the position of the first aircraft comprises
the step of determining the position of the first aircraft
in reference to the fixed reference.

6. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 5 wherein the step of
determining the position of the first aircraft further
comprises the step of determining the altitude of the first
aircraft.

7. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 or 5 wherein the step
of encoding the position of the first aircraft comprises
the step of encoding the position of the aircraft into a
digital pulse train.

8. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 7 wherein the step of
encoding the position of the first aircraft further com-
prises the step of translating the position of the first
aircraft into an audio signal.

9. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 wherein the step of
avoiding conflicts with any conflicting radio frequency
signals in the airspace comprises the step of listening for
any conflicting radio frequency signals.

10. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 9 wherein the step of
avoiding conflicts with any conflicting radio frequency
signals in the airspace comprises the step of waiting a
period of time prior to transmission.

11. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 10 wherein the step of
avoiding conflicts with any conflicting radio frequency
signals in the airspace comprises the step of waiting a
predetermined period of time prior to transmission.

12. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 10 wherein the step of
avoiding conflicts with any conflicting radio frequency
signals in the airspace comprises the step of waiting a
random period of time prior to transmission.

13. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 or 10 wherein the step of
avoiding conflicts with any conflicting radio frequency
signals in the airspace comprises the step of transmitting a radio frequency signal in a non-interroga-
tion manner.

14. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 wherein the step of
transmitting the first radio frequency signal comprises
the step of transmitting the first radio frequency signal
in the frequency range from about and including the
VHF band to about and including the SHF band.

15. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 wherein the step of
transmitting the first radio frequency signal comprises
a substantially omnidirectional pattern.

16. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 1 further comprising the
step of repeating steps (a) through (g).

17. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 16 wherein the step of
monitoring the position of the first aircraft comprises
the step of repeatedly displaying the position of the first
aircraft on a display as the aircraft changes position.

18. A method for announcing the position of a first
aircraft at a first position to a receiver located at a sec-
ond position as defined in claim 17 wherein the step of
...
monitoring the position of the first craft further comprises the step of displaying the heading and the speed of the first aircraft on a display.

19. A method for announcing the position of a first aircraft at a first position to a receiver located at a second position as defined in claim 1 wherein the step of monitoring the position of the first aircraft comprises the step of displaying the relative position of the first aircraft on a display over a selected period of time.

20. A method for announcing the position of a first aircraft at a first position to a receiver located at a second position as defined in claim 1 further comprising the step of determining the location of the second position relative to the fixed reference and wherein the step of monitoring the position of the first aircraft comprises the step of displaying the position of the first aircraft and the location of the second position.

21. A method of tracking the position of a first craft by monitoring receiver at a second craft, the first craft and the monitoring receiver being within a predetermined range of each other, the method comprising the steps of:

(a) determining, internally to the first craft using an external automated navigational system, the first craft's position in at least one plane of space;

(b) encoding for the first craft an identification code, the presence or absence of any current communication radio frequency and the first craft's position, all in a form which can be carried by a first radio frequency signal;

(c) determining when the first radio frequency signal should be transmitted;

(d) transmitting the first radio frequency signal;

(e) receiving the first radio frequency signal at the monitoring receiver of the second craft;

(f) decoding at the monitoring receiver of the second craft the first craft's identification code, any current communication radio frequency and the position from the first radio frequency signal;

(g) displaying the identification code, any current communication radio frequency and the position of the first craft at the monitoring receiver of the second craft; and

(h) repeating steps (a) through (g).

22. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 wherein the step of determining the first craft's position comprises the step of determining the first craft's position using a LORAN receiver.

23. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 wherein the step of determining the first craft's position comprises the step of determining the first craft's position using a GPS receiver.

24. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 wherein the step of determining the first craft's position is defined in reference to the latitude and longitude of the first craft.

25. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 wherein the step of determining the first craft's position comprises the step of displaying the relative position of the first aircraft on a display over a selected period of time.

26. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 24 or 25 wherein the step of encoding the first craft's position comprises the step of encoding the position of the first craft into a digital pulse train.

27. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 26 wherein the step of encoding the position of the first craft's position further comprises the step of translating the position of the first craft into an audio signal.

28. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 further comprising the step of avoiding conflicts with any conflicting radio frequency signals in the airspace.

29. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 28 wherein the step of avoiding conflicts with any conflicting radio frequency signals in the airspace comprises the step of listening for any conflicting radio frequency signals.

30. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 28 wherein the step of avoiding conflicts with any conflicting radio frequency signals in the airspace comprises the step of waiting a period of time prior to transmission.

31. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 28 wherein the step of avoiding conflicts with any conflicting radio frequency signals in the airspace comprises the step of waiting a predetermined period of time prior to transmission.

32. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 or 28 wherein the step of avoiding conflicts with any conflicting radio frequency signals in the airspace comprises the step of transmitting a radio frequency signal in a non-interrogation manner.

33. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 wherein the step of transmitting the first radio frequency signal comprises the step of transmitting the first radio frequency signal in the frequency range from about and including the VHF band to about and including the SHF band.

34. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring receiver being within a predetermined range of each other, as defined in claim 21 wherein the step of transmitting the first radio frequency signal comprises the step of transmitting the first radio frequency signal in a substantially omnidirectional pattern.

35. A method of tracking the position of a first craft by a monitoring receiver, the first craft and the monitoring-
being within a predetermined range of each other, as defined in claim 59 wherein the step (a) of determining the first craft's position comprises the step of receiving a GPS signal.

42. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 59 wherein said existing automated navigational system is available both within and outside the predetermined range.

43. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 42 wherein the step (a) of determining the first craft's position comprises the step of determining the first craft's position in latitude and longitude.

44. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 42 wherein the step (a) of determining the first craft's position comprises the step of determining the altitude of the first craft.

45. A method for announcing the position of a first aircraft at a first position to a receiver located at a second position as defined in claim 43 or 44 wherein the step of avoiding conflicts with any conflicting radio frequency signals in the airspace comprises the step of transmitting a radio frequency signal in a non-interrogation manner.

46. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 43 or 44 wherein the step of encoding the first craft's position comprises the step of encoding the position of the first craft into a digital pulse train.

47. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 46 wherein the step of encoding the position of the first craft further comprises the step of translating the first craft's position into an audio signal.

48. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 46 wherein the step of determining whether the first radio frequency signal will conflict with any other radio frequency signals comprises the steps of:

- listening for any conflicting radio frequency signals;
- and waiting a period of time prior to transmission.

49. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 48 wherein the step of waiting a period of time comprises the step of waiting a randomly assigned period of time.

50. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 39 wherein the step of encoding the first craft's position comprises the step of encoding an identification code for the first craft so that the identification code can be carried by the first radio frequency signal and wherein the step of transmitting the first radio frequency signal comprises the steps of:

- transmitting the first radio frequency signal in the frequency range from about and including the
VHF band to about and including the SHF band; transmitting the first radio frequency signal in a substantially omnidirectional pattern; and transmitting the identification code for the first craft.

51. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 39 wherein the step of apprising the operator comprises the step of repeatedly displaying the position of the first craft on a display as the first craft changes position.

52. A method of tracking the position of a first craft from on board a second craft, the first and second craft being within a predetermined range of each other, as defined in claim 51 wherein the step of apprising the operator of the second craft comprises the steps of:
   displaying the relative position and direction of travel of the first craft on a display; and
   displaying the position of the second craft on a display.

53. A method of avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first and second crafts coming within a predetermined range of each other, the method comprising the steps of:
   (a) determining, on board the first craft and using an existing automated navigational system, the first craft's position in at least one plane in space which is of interest to the second craft to avoid a collision with the first craft;
   (b) encoding the first craft's position, identification code and the presence or absence of any current operating communication radio frequency on which voice contact with the first craft can be established, all to be carried by a first radio frequency signal;
   (c) listening for any radio frequency signals present on the same frequency allocation as the first radio frequency signal;
   (d) transmitting the first radio frequency signal carrying the first craft's position, identification code and the presence or absence of any current communication radio frequency on which voice contact with the first craft can be established;
   (e) receiving the first radio frequency signal at the second craft;
   (f) decoding from the first radio frequency the first craft's position, identification code and current communication radio frequency, if any, on which voice contact with the first craft can be established;
   (g) determining the second craft's position, on board the second craft by using said existing automated navigational system, and in at least one dimension of space, which is of interest to the operator of the second craft, to avoid a collision with the first craft;
   (h) displaying, on board the second craft, the position, identification code and current communication radio frequency, if any, on which voice contact to the first craft can be established, and displaying the location of the second craft so that the operator of the second craft is apprised of the location of the both the first craft and the second craft so as to avoid a collision therebetween; and
   (i) repeating steps (a) through (h).

54. A method of avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first and second craft coming within a predetermined range of each other, as defined in claim 53 wherein the step of determining the first craft's position comprises the step of receiving a LORAN signal or a GPS signal.

55. A method of avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first and second craft coming within a predetermined range of each other, as defined in claim 54 wherein the first craft comprises an aircraft and wherein the step of determining first craft's position comprises the step of determining the latitude, longitude, and altitude of the first aircraft.

56. A method of avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first and second craft coming within a predetermined range of each other, as defined in claim 55 wherein the step of determining the first craft's position comprises the step of encoding the latitude and longitude of the first craft into a digital pulse train which can be carried by a frequency modulated first radio frequency signal.

57. A method of avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first and second craft coming within a predetermined range of each other, as defined in claim 56 wherein the step of encoding the first craft's position comprises the step of generating a sequence of pulses representing a time function which is dependent on the first craft's position and the second craft's position.

58. A method of avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first and second craft coming within a predetermined range of each other, as defined in claim 57 wherein the step of generating said sequence of pulses comprises the step of generating a sequence of pulses representing a time function which is dependent on the first craft's position and the second craft's position.

59. A method of avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first and second craft coming within a predetermined range of each other, as defined in claim 58 wherein the step of generating said sequence of pulses comprises the step of encoding said sequence of pulses on said first radio frequency signal transmitted to the second craft.

60. An apparatus for announcing the position of a first aircraft at a first position within airspace containing a plurality of other aircraft, to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, the apparatus comprising:
   means for making an on board determination of the position of the first aircraft using the existing navigational system;
   means for encoding the position of the first aircraft, and any identification code and the presence or absence of any current communication radio frequency on which voice contact to the first aircraft can be made, into information which can be carried
by a first radio frequency signal; means for detecting the presence of any conflicting radio frequency signal which would interfere with the first radio frequency signal and determining whether transmission of the first radio frequency should proceed; means for transmitting the first radio frequency signal from the first aircraft such that the radio frequency signal can be received at the receiver, decoded, and such that the position, identification code and current communication radio frequency, if any, on which voice contact can be made to the first aircraft is displayed.

61. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 60 wherein the means for making an on board determination of the position of the first aircraft comprises a LORAN receiver.

62. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 60 wherein the means for making an on board determination of the position of the first aircraft comprises a GPS receiver.

63. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 60 wherein the means for making an on board determination of the position of the first aircraft comprises means for determining the latitude and longitude of the first aircraft.

64. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 63 wherein the means for making an on board determination of the position of the first aircraft further comprises means for determining the altitude of the aircraft.

65. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 60 wherein the means for transmitting the first radio frequency signal comprises a radio frequency transmitter operating in a frequency range from about and including the VHF band to about and including the SHF band.

66. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 65 wherein the means for transmitting the first radio frequency signal further comprises an omnidirectional antenna.

67. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 60 wherein the means for detecting the presence of any conflicting radio frequency signal comprises a radio frequency receiver.

68. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 60 wherein the means for encoding the position of the first aircraft is further for encoding an identification code into information which can be carried by the first radio frequency signal.

69. An apparatus for announcing the position of a first aircraft at a first position to a receiver located at a second position within a predetermined range of the first aircraft, the first aircraft being within operational range of an existing navigational system which can provide position information in at least two planes of interest, as defined in claim 60 further comprising:

means for receiving a second radio frequency signal carrying the position and identification code for a second aircraft, and the presence or absence of any current communication radio frequency on which voice contact to the second aircraft can be established;

means for decoding from the second radio frequency signal the second aircraft's position, identification code, and the presence of absence of any current communication radio frequency on which voice contact to the second aircraft can be established;

and

means for displaying, on board the first aircraft, the second aircraft's position, identification code, and the presence or absence of any current communication radio frequency on which voice contact to the second aircraft can be established so that the operator of the first craft is apprised of the position of the second aircraft and is potentially able to make voice contact with the second aircraft.

70. An apparatus for tracking the position of a second craft from on board a first craft, the first and the second craft being within range of an existing navigational system and within a predetermined range of each other, the apparatus comprising:

means, on board the first craft, for receiving a determination of the position of the first craft using the existing navigational system, the position of the first craft being determined in at least two planes of interest to the operator of the second craft;

means for encoding the first craft's position, and any identification code and the presence or absence of any current communication radio frequency on which voice contact to the first craft can be made, in a form which can be carried by a first radio frequency signal;

means for transmitting the first radio frequency signal;
means for receiving a second radio frequency signal carrying the second craft's position an identification code for the second craft and the presence or absence of any current communication radio frequency on which the second craft can contacted by voice;

means for decoding the second craft's position, identification code and current communication radio frequency, if any, from the second radio frequency signal;

means for displaying, on board the first craft, the second craft's position, identification code and current communication radio frequency, if any, decoded from the second radio frequency signal so that the operator of the first craft is apprised of the position, identification code and current communication radio frequency, if any, of the second craft.

71. An apparatus for tracking the position of a second craft from on board a first craft as defined in claim 70 wherein the means for receiving an on board determination of the position of the first craft comprises a data port adapted to receive data from a LORAN receiver.

72. An apparatus for tracking the position of a second craft from on board a first craft as defined in claim 70 wherein the means for receiving an on board determination of the position of the first craft comprises a data port adapted to receive data from a GPS receiver.

73. An apparatus for tracking the position of a second craft from on board a first craft as defined in claim 70 wherein the means for transmitting the first radio frequency signal comprises:

- a radio frequency transmitter operating in a frequency range from about and including the VHF band to about and including the SHF band; and
- an omnidirectional antenna system.

74. An apparatus for tracking the position of a second craft from on board a first craft as defined in claim 73 further comprising means for detecting the presence of any conflicting radio frequency signal.

75. An apparatus for avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code, the first craft being within range of an existing navigational system and the first and the second craft being within a predetermined range of each other, the apparatus comprising:

- means for determining, on board the first craft and using the existing navigational system, the first craft's position in at least one plane in space which is of interest to the second craft to avoid a collision with the first craft;
- means for encoding the first craft's position, the first identification code and the presence or absence of any current communication radio frequency on which the first craft can be contacted by voice, such that the encoded information is carried by a first radio frequency signal;
- means for detecting the presence of any conflicting radio frequency signal and determining whether transmission of the first radio frequency should proceed;
- means for transmitting the first radio signal;
- means for receiving, on board the first craft, a second radio frequency signal transmitted from the second craft, the second radio frequency signal carrying the position of the second craft, the second identification code and the presence or absence of any current communication radio frequency on which the second craft can be contacted by voice;
- means for decoding, on board the first craft, the second craft's position, the second identification code and the presence or absence of any current communication radio frequency on which the second craft can be contacted by voice;
- means for simultaneously displaying the first craft's position and the second craft's position on board the first craft so that the operator of the first craft is apprised of the position of the second craft, the second identification code and the presence or absence of any current communication radio frequency on which the second craft can be contacted by voice so as to avoid a collision therebetween.

76. An apparatus for avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code as defined in claim 75 wherein the means for determining the first craft's position comprises a LORAN receiver.

77. An apparatus for avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code as defined in claim 75 wherein the means for determining the first craft's position comprises a GPS receiver.

78. An apparatus for avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code as defined in claim 76 or 77 wherein the means for transmitting the first radio frequency signal comprises:

- a radio frequency transmitter operating in a frequency range from about and including the VHF band to about and including the SHF band; and
- an omnidirectional antenna system.

79. An apparatus for avoiding collisions between a first craft having a first identification code and at least a second craft having a second identification code as defined in claim 78 wherein the means for detecting the presence of any conflicting radio frequency signal comprises a radio frequency receiver.
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,153,836
DATED : October 6, 1992
INVENTOR(S) : EDWARD J. FRAUGHTON et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, column 1, lines 9-10, "Salt Lake City, Utah" should be --South Jordan, Utah--
Column 1, line 10, "any one" should be --anyone--
Column 2, line 13, "dependant" should be --dependent--
Column 2, line 16, "dependant" should be --dependent--
Column 4, line 27, "interfer" should be --interfere--
Column 9, line 48, delete "a"
Column 10, lines 38-39, "speed spectrum" should be --spread spectrum--
Column 10, line 40, before "non-interrogation" insert --interrogation or--
Column 232, line 24, "aircraft" should be --craft--
Column 233, line 26, eliminate "to"
Column 229, line 19, after "by" insert --a--

Signed and Sealed this
Twenty-third Day of November, 1993

Attest:

BRUCE LEHMAN
Attesting Officer
Commissioner of Patents and Trademarks