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Basic concepts of real-time operating systems

by David Kalinsky (Nov. 18, 2003)

The fundamentals

To most people, embedded systems are not recognizable as computers. Instead, 
they are hidden inside everyday objects that surround us and help us in our lives. 
Embedded systems typically do not interface with the outside world through 
familiar personal computer interface devices such as a mouse, keyboard and 
graphic user interface. Instead, they interface with the outside world through 
unusual interfaces such as sensors, actuators and specialized communication 
links. 

Real-time and embedded systems operate in constrained environments in which 
computer memory and processing power are limited. They often need to provide 
their services within strict time deadlines to their users and to the surrounding 
world. It is these memory, speed and timing constraints that dictate the use of 
real-time operating systems in embedded software.

Basic kernel services

In the discussion below, we will focus on the "kernel" ? the part of an operating
system that provides the most basic services to application software running on a
processor. 

The "kernel" of a real-time operating system ("RTOS") provides an "abstraction 
layer" that hides from application software the hardware details of the processor 
(or set of processors) upon which the application software will run. This is shown 
in Figure1. 

Figure 1: An RTOS Kernel provides an Abstraction Layer between 
Application Software and Embedded Hardware

In providing this "abstraction layer" the RTOS kernel supplies five main categories 
of basic services to application software, as seen in Figure 2. 
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Figure 2: Basic Services Provided by a Real-Time Operating System Kernel

The most basic category of kernel services, at the very center of Figure 2, is Task 
Management. This set of services allows application software developers to 
design their software as a number of separate "chunks" of software -- each 
handling a distinct topic, a distinct goal, and perhaps its own real-time deadline. 
Each separate "chunk" of software is called a "task." Services in this category 
include the ability to launch tasks and assign priorities to them. The main RTOS 
service in this category is the scheduling of tasks as the embedded system is in 
operation. The Task Scheduler controls the execution of application software 
tasks, and can make them run in a very timely and responsive fashion. [Later, we 
will see the details of how this is done.]

The second category of kernel services, shown at the top of Figure 2, is Intertask 
Communication and Synchronization. These services make it possible for tasks to 
pass information from one to another, without danger of that information ever 
being damaged. They also make it possible for tasks to coordinate, so that they 
can productively cooperate with one another. Without the help of these RTOS 
services, tasks might well communicate corrupted information or otherwise 
interfere with each other.

Since many embedded systems have stringent timing requirements, most RTOS 
kernels also provide some basic Timer services, such as task delays and 
time-outs. These are shown on the right side of Figure 2.

Many (but not all) RTOS kernels provide Dynamic Memory Allocation services. 
This category of services allows tasks to "borrow" chunks of RAM memory for 
temporary use in application software. Often these chunks of memory are then 
passed from task to task, as a means of quickly communicating large amounts of 
data between tasks. Some very small RTOS kernels that are intended for tightly 
memory-limited environments, do not offer Dynamic Memory Allocation services.

Many (but not all) RTOS kernels also provide a "Device I/O Supervisor" category 
of services. These services, if available, provide a uniform framework for 
organizing and accessing the many hardware device drivers that are typical of an 
embedded system. [For more information on this, please visit: the device drivers 
page at the Kalinsky Associates Website]

In addition to kernel services, many RTOSs offer a number of optional add-on 
operating system components for such high-level services as file system 
organization, network communication, network management, database 
management, user-interface graphics, etc. Although many of these add-on 
components are much larger and much more complex than the RTOS kernel, they 
rely on the presence of the RTOS kernel and take advantage of its basic services. 
Each of these add-on components is included in an embedded system only if its 
services are needed for implementing the embedded application, in order to keep 
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program memory consumption to a minimum.

In this paper, we will focus on the basic RTOS kernel services for task 
management, intertask communication and synchronization, and dynamic memory 
allocation.

RTOSs vs. general-purpose operating systems

Many non-real-time operating systems also provide similar kernel services. The 
key difference between general-computing operating systems and real-time 
operating systems is the need for " deterministic " timing behavior in the
real-time operating systems. Formally, "deterministic" timing means that operating
system services consume only known and expected amounts of time. In theory,
these service times could be expressed as mathematical formulas. These
formulas must be strictly algebraic and not include any random timing
components. Random elements in service times could cause random delays in
application software and could then make the application randomly miss real-time
deadlines ? a scenario clearly unacceptable for a real-time embedded system.

General-computing non-real-time operating systems are often quite 
non-deterministic. Their services can inject random delays into application 
software and thus cause slow responsiveness of an application at unexpected 
times. If you ask the developer of a non-real-time operating system for the 
algebraic formula describing the timing behavior of one of its services (such as 
sending a message from task to task), you will invariably not get an algebraic 
formula. Instead the developer of the non-real-time operating system (such as 
Windows, Unix or Linux) will just give you a puzzled look. Deterministic timing 
behavior was simply not a design goal for these general-computing operating 
systems.

On the other hand, real-time operating systems often go a step beyond basic 
determinism. For most kernel services, these operating systems offer constant 
load-independent timing: In other words, the algebraic formula is as simple as: 
T(message_send) = constant , irrespective of the length of the message to be 
sent, or other factors such as the numbers of tasks and queues and messages 
being managed by the RTOS.

Task scheduling

Most RTOSs do their scheduling of tasks using a scheme called "priority-based 
preemptive scheduling." Each task in a software application must be assigned a 
priority, with higher priority values representing the need for quicker 
responsiveness. Very quick responsiveness is made possible by the "preemptive" 
nature of the task scheduling. "Preemptive" means that the scheduler is allowed 
to stop any task at any point in its execution, if it determines that another task 
needs to run immediately.

The basic rule that governs priority-based preemptive scheduling is that at every 
moment in time, "The Highest Priority Task that is Ready to Run, will be the Task 
that Must be Running." In other words, if both a low-priority task and a 
higher-priority task are ready to run, the scheduler will allow the higher-priority 
task to run first. The low-priority task will only get to run after the higher-priority 
task has finished with its current work.

What if a low-priority task has already begun to run, and then a higher-priority task
becomes ready? This might occur because of an external world trigger such as a
switch closing. A priority-based preemptive scheduler will behave as follows: It will
allow the low-priority task to complete the current assembly-language instruction
that it is executing. [But it won?t allow it to complete an entire line of high-level
language code; nor will it allow it to continue running until the next clock tick.] It
will then immediately stop the execution of the low-priority task, and allow the
higher-priority task to run. After the higher-priority task has finished its current
work, the low-priority task will be allowed to continue running. This is shown in
Figure 3, where the higher-priority task is called "Mid-Priority Task."

 news feed
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Of course, while the mid-priority task is running, an even higher-priority task might 
become ready. This is represented in Figure 3 by "Trigger_2" causing the 
"High-Priority Task" to become ready. In that case, the running task ("Mid-Priority 
Task") would be preempted to allow the high-priority task to run. When the 
high-priority task has finished its current work, the mid-priority task would be 
allowed to continue. And after both the high-priority task and the mid-priority task 
complete their work, the low-priority task would be allowed to continue running. 
This situation might be called "nested preemption." 

 
Figure 3: Timeline for Priority-based Preemptive Scheduling Examples

Each time the priority-based preemptive scheduler is alerted by an external world 
trigger (such as a switch closing) or a software trigger (such as a message 
arrival), it must go through the following 5 steps:

Determine whether the currently running task should continue to run. If not ?
Determine which task should run next.
Save the environment of the task that was stopped (so it can continue later).
Set up the running environment of the task that will run next.
Allow this task to run.

These 5 steps together are called "task switching." 

Fixed-time task switching

The time it takes to do task switching is of interest when evaluating an operating 
system. A simple general-computing (non-preemptive) operating system might do 
task switching only at timer tick times, which might for example be ten 
milliseconds apart. Then if the need for a task switch arises anywhere within a 
10-millisecond timeframe, the actual task switch would occur only at the end of 
the current 10-millisecond period. Such a delay would be unacceptable in most 
real-time embedded systems.

In more sophisticated preemptive task schedulers, the scheduler may need to 
search through arrays of tasks to determine which task should be made to run 
next. If there are more tasks to search through, the search will take longer. Such 
searches are often done by general-computing operating systems, thus making 
them non-deterministic. Real-time operating systems, on the other hand, avoid 
such searches by using incrementally updated tables that allow the task scheduler 
to identify the task that should run next in a rapid fixed-time fashion.

These two types of timing behavior for task switching can be seen in Figure 4.
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Figure 4: Task Switching Timing

In this figure, we see that for a general-computing (non-real-time) operating 
system, the task switching time generally rises as a software system includes 
more tasks that can be scheduled. However, the actual time for a task switch is 
not the time shown by the dashed red line. Instead, in any given task switch 
instance, it might be well above or well below the time shown by the dashed red 
line. The shaded regions surrounding the dashed red line simply show the 
likelihood of the actual task switch time being that far above or below the dashed 
red line.

On the other hand, the horizontal solid green line shows the task switching time 
characteristic of a real-time operating system. It is constant, independent of any 
load factor such as the number of tasks in a software system.

Please note that in some instances, such as the leftmost area of the graph, the 
task switching time might in special cases be quicker for a general-computing 
non-real-time operating system, than for a real-time operating system. This does 
not detract from the appropriateness of a real-time operating system for real-time 
embedded applications. For, in fact, the term "real-time" does not mean "as fast 
as possible" but rather "real-time" demands consistent, repeatable, known timing 
performance. Although a non-real-time operating system might do some faster 
task switching for small numbers of tasks, it might equally well introduce a long 
time delay the next time it does the same task switch. The strength of a real-time 
operating system is in its known, repeatable timing performance, which is also 
typically faster than that of a non-deterministic task scheduler in situations of large 
numbers of tasks in a software system. Most often, the real-time operating system 
will exhibit task-switching times much faster than its non-real-time competitor 
when the number of tasks grows above 5 or 10.

Intertask communication and synchronization

Most operating systems, including RTOSs, offer a variety of mechanisms for 
communication and synchronization between tasks. These mechanisms are 
necessary in a preemptive environment of many tasks, because without them the 
tasks might well communicate corrupted information or otherwise interfere with 
each other.

For instance, a task might be preempted when it is in the middle of updating a 
table of data. If a second task that preempts it reads from that table, it will read a 
combination of some areas of newly-updated data plus some areas of data that 
have not yet been updated. [New Yorkers would call this a "mish-mash."] These 
updated and old data areas together may be incorrect in combination, or may not 
even make sense. An example is a data table containing temperature 
measurements that begins with the contents "10 C." A task begins updating this 
table with the new value "99 F", writing into the table character-by-character. If 
that task is preempted in the middle of the update, a second task that preempts it 
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could possibly read a value like "90 C" or "99 C." or "99 F", depending on 
precisely when the preemption took place. The partially updated values are clearly 
incorrect, and are caused by delicate timing coincidences that are very hard to 
debug or reproduce consistently.

An RTOS's mechanisms for communication and synchronization between tasks 
are provided to avoid these kinds of errors. Most RTOSs provide several 
mechanisms, with each mechanism optimized for reliably passing a different kind 
of information from task to task.

Probably the most popular kind of communication between tasks in embedded 
systems is the passing of data from one task to another. Most RTOSs offer a 
message passing mechanism for doing this, as seen in Figure 5. Each message 
can contain an array or buffer of data. 

Figure 5: Intertask Message Communication

If messages can be sent more quickly than they can be handled, the RTOS will 
provide message queues for holding the messages until they can be processed. 
This is shown in Figure6.

Another kind of communication between tasks in embedded systems is the
passing of what might be called "synchronization information" from one task to
another. "Synchronization information" is like a command, where some
commands could be positive, and some negative. For example, a negative
command to a task would be something like "Please don?t print right now,
because my task is using the printer." Or more generally, "I want to lock the . . .
for my own use only." A positive command would be something like "I?ve detected
a cardiac emergency, and I want you to help me handle it." Or more generally,
"Please join me in handling . . ."

Most RTOSs offer a semaphore or mutex mechanism for handling negative
synchronization (sometimes called "mutual exclusion"). These mechanisms allow
tasks to lock certain embedded system resources for their use only, and
subsequently to unlock the resource when they?re done.

For positive synchronization, different RTOSs offer different mechanisms. Some 
RTOSs offer event-flags, while others offer signals. And yet others rely on 
message passing for positive synchronization as well as data passing duties.

Determinism and high-speed message passing

Intertask message communication is another area where different operating
systems show different timing characteristics. Most operating systems actually
copy messages twice as they transfer them from task to task via a message
queue. See Figure 6. The first copying is from the message-sender task to an
operating system-owned "secret" area of RAM memory (implementing the
"message queue"); and the second copying is from the operating system?s
"secret" RAM area to the message-receiver task. Clearly this is non-deterministic
in its timing, as these copying activities take longer as message length increases. 

Figure 6: Message Transfer via Message Queue

An approach that avoids this non-determinism and also accelerates performance, 
is to have the operating system copy a pointer to the message and deliver that 
pointer to the message-receiver task without moving the message contents at all. 
In order to avoid access collisions, the operating system then needs to go back to 
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the message-sender task and obliterate its copy of the pointer to the message. 
For large messages, this eliminates the need for lengthy copying and eliminates 
non-determinism.

Dynamic memory allocation

Determinism of service times is also an issue in the area of dynamic allocation of
RAM memory. Many general-computing non-real-time operating systems offer
memory allocation services from what is termed a "Heap." The famous "malloc"
and "free" services known to C-language programmers work from a heap. Tasks
can temporarily borrow some memory from the operating system?s heap by
calling "malloc", and specifying the size of memory buffer needed. When this task
(or another task) is finished with this memory buffer it can return the buffer to the
operating system by calling "free." The operating system will then return the buffer
to the heap, where its memory might be used again, perhaps as part of a larger
buffer. Or perhaps it may in the future be broken into several smaller buffers.

Heaps suffer from a phenomenon called "External Memory Fragmentation" that
may cause the heap services to degrade. This fragmentation is caused by the fact
that when a buffer is returned to the heap, it may in the future be broken into
smaller buffers when "malloc" requests for smaller buffer sizes occur. After a heap
undergoes many cycles of "malloc"s and "free"s, small slivers of memory may
appear between memory buffers that are being used by tasks. These slivers are
so small that they are useless to tasks. But they are trapped between buffers that
are being used by tasks, so they can?t be coagulated ("glued") together into
bigger, useful buffer sizes. Over time, a heap will have more and more of these
slivers. This will eventually result in situations where tasks will ask for memory
buffers ("malloc") of a certain size, and they will be refused by the operating
system --- even though the operating system has enough available memory in its
heap. The problem: That memory is scattered in small slivers distributed in
various separate parts of the heap. In operating system terminology, the slivers
are called "fragments", and this problem is called "external memory
fragmentation."

This fragmentation problem can be solved by so-called "garbage collection"
(defragmentation) software. Unfortunately, "garbage collection" algorithms are
often wildly non-deterministic ? injecting randomly-appearing random-duration
delays into heap services. These are often seen in the memory allocation services
of general-computing non-real-time operating systems.

This puts the embedded system developer who wants to use a general-computing 
non-real-time operating system into a quandry: Should the embedded system be 
allowed to suffer occasional randomly-appearing random-duration delays if / when 
"garbage collection" kicks in?... Or, alternatively, should the embedded system be 
allowed to fragment its memory until application software "malloc" requests to the 
heap are refused even though a sufficient total amount of free memory is still 
available? Neither alternative is acceptable for embedded systems that need to 
provide service continually for long periods of time.

Real-time operating systems, on the other hand, solve this quandry by altogether 
avoiding both memory fragmentation and "garbage collection", and their 
consequences. RTOSs offer non-fragmenting memory allocation techniques 
instead of heaps. They do this by limiting the variety of memory chunk sizes they 
make available to application software. While this approach is less flexible than 
the approach taken by memory heaps, they do avoid external memory 
fragmentation and avoid the need for defragmentation. For example, the "Pools" 
memory allocation mechanism allows application software to allocate chunks of 
memory of perhaps 4 or 8 different buffer sizes per pool. Pools totally avoid 
external memory fragmentation, by not permitting a buffer that is returned to the 
pool to be broken into smaller buffers in the future. Instead, when a buffer is 
returned the pool, it is put onto a "free buffer list" of buffers of its own size that are 
available for future re-use at their original buffer size. This is shown in Figure 7. 
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Figure 7: A Memory Pool's Free Buffer Lists 

Memory is allocated and de-allocated from a pool with deterministic, often 
constant, timing. 

Summary

Real-time and embedded systems are used in many applications such as airborne 
computers, medical instruments and communication systems. Embedded systems 
are characterized by limited processor memory, limited processing power, and 
unusual interfaces to the outside world. Real-time requirements impose stringent 
time deadlines for delivering the results of embedded processing.

RTOS kernels hide from application software the low-level details of system 
hardware, and at the same time provide several categories of services to 
application software. These include: task management with priority-based 
preemptive scheduling, reliable intertask communication and synchronization, 
non-fragmenting dynamic memory allocation, and basic timer services.

The issue of timing determinism is important in differentiating general-computing 
operating systems from real-time operating systems. This issue crops up in many 
parts of operating system kernels, such as task schedulers, dynamic memory 
allocation and intertask message communication. While general-computing 
operating systems often offer non-deterministic services in these areas, fully 
deterministic solutions are needed for real-time and embedded systems. A 
number of real-time operating systems implement these solutions in their compact 
high-performance kernels. 
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and Europe, on topics such as "Architectural Design of Device I/O 
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the design of embedded medical and aerospace systems. David holds a Ph.D. in 
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